minor fixes
This commit is contained in:
parent
23f2136cd6
commit
12df7f9308
6
assets/zeng2022lion.bib
Normal file
6
assets/zeng2022lion.bib
Normal file
|
@ -0,0 +1,6 @@
|
|||
@inproceedings{zeng2022lion,
|
||||
title={LION: Latent Point Diffusion Models for 3D Shape Generation},
|
||||
author={Xiaohui Zeng and Arash Vahdat and Francis Williams and Zan Gojcic and Or Litany and Sanja Fidler and Karsten Kreis},
|
||||
booktitle={Advances in Neural Information Processing Systems (NeurIPS)},
|
||||
year={2022}
|
||||
}
|
27
index.html
27
index.html
|
@ -345,7 +345,7 @@ pre {
|
|||
<div class="paper-title">
|
||||
<h1>
|
||||
<font color="#5364cc">LION</font>:
|
||||
<font color="#5364cc">L</font>atent Point Diffus<font color="#5364cc">ion</font> Models <br> for 3D Shape Generation</h1>
|
||||
<font color="#5364cc">L</font>atent Po<font color="#5364cc">i</font>nt Diffusi<font color="#5364cc">on</font> Models <br> for 3D Shape Generation</h1>
|
||||
</div>
|
||||
|
||||
<div id="authors">
|
||||
|
@ -409,7 +409,9 @@ pre {
|
|||
<hr>
|
||||
<h2>News</h2>
|
||||
<div class="row">
|
||||
<div><span class="material-icons"> event </span> [Sept 2022] Build the project page <a href="https://github.com/nv-tlabs/LION">Page</a>!</div>
|
||||
<div><span class="material-icons"> event </span> [Oct 2022] <a href="https://nv-tlabs.github.io/LION">Project page</a> released!</div>
|
||||
<div><span class="material-icons"> event </span> [Oct 2022] Paper released on <a href="https://github.com/nv-tlabs/LION">arXiv</a>!</div>
|
||||
<div><span class="material-icons"> event </span> [Aug 2022] LION got accepted to <b>Advances in Neural Information Processing Systems (NeurIPS)</b>!</div>
|
||||
</div>
|
||||
</section>
|
||||
|
||||
|
@ -426,8 +428,8 @@ pre {
|
|||
we train two hierarchical DDMs in these latent spaces. The hierarchical VAE approach boosts performance compared to DDMs that operate
|
||||
on point clouds directly, while the point-structured latents are still ideally suited for DDM-based modeling. Experimentally, LION
|
||||
achieves state-of-the-art generation performance on multiple ShapeNet benchmarks. Furthermore, our VAE framework allows us to easily
|
||||
use LION for different relevant tasks without re-training the latent DDMs: We show that LION excels at multimodal shape denoising and
|
||||
voxel-conditioned synthesis. We also demonstrate shape autoencoding and latent shape interpolation, and we augment LION with modern
|
||||
use LION for different relevant tasks: LION excels at multimodal shape denoising and voxel-conditioned synthesis, and it can be adapted
|
||||
for text- and image-driven 3D generation.. We also demonstrate shape autoencoding and latent shape interpolation, and we augment LION with modern
|
||||
surface reconstruction techniques to generate smooth 3D meshes. We hope that LION provides a powerful tool for artists working with
|
||||
3D shapes due to its high-quality generation, flexibility, and surface reconstruction.
|
||||
</p>
|
||||
|
@ -777,12 +779,10 @@ pre {
|
|||
<div class="paper-stuff">
|
||||
<p><b>LION: Latent Point Diffusion Models for 3D Shape Generation</b></p>
|
||||
<p>Xiaohui Zeng, Arash Vahdat, Francis Williams, Zan Gojcic, Or Litany, Sanja Fidler, Karsten Kreis</p>
|
||||
<p><i>Advances in Neural Information Processing Systems (NeurIPS), 2022 <b></b></i></p>
|
||||
<!--
|
||||
<div><span class="material-icons"> description </span><a href="https://arxiv.org/abs/2112.07068"> arXiv version</a></div>
|
||||
<div><span class="material-icons"> insert_comment </span><a href="assets/dockhorn2021score.bib"> BibTeX</a></div>
|
||||
<div><span class="material-icons"> integration_instructions </span><a href="https://github.com/nv-tlabs/CLD-SGM"> Code</a></div>
|
||||
-->
|
||||
<p><i>Advances in Neural Information Processing Systems (NeurIPS), 2022 <b></b></i></p>
|
||||
<div><span class="material-icons"> description </span><a href="https://github.com/nv-tlabs/LION"> arXiv version</a></div>
|
||||
<div><span class="material-icons"> insert_comment </span><a href="assets/zeng2022lion.bib"> BibTeX</a></div>
|
||||
<div><span class="material-icons"> integration_instructions </span><a href="https://github.com/nv-tlabs/LION"> Code</a></div>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
|
@ -791,10 +791,9 @@ pre {
|
|||
<section id="bibtex">
|
||||
<h2>Citation</h2>
|
||||
<hr>
|
||||
<pre><code>@inproceedings{
|
||||
zeng2022lion,
|
||||
title={ LION: Latent Point Diffusion Models for 3D Shape Generation },
|
||||
author={ Xiaohui Zeng and Arash Vahdat and Francis Williams and Zan Gojcic and Or Litany and Sanja Fidler and Karsten Kreis },
|
||||
<pre><code>@inproceedings{zeng2022lion,
|
||||
title={LION: Latent Point Diffusion Models for 3D Shape Generation},
|
||||
author={Xiaohui Zeng and Arash Vahdat and Francis Williams and Zan Gojcic and Or Litany and Sanja Fidler and Karsten Kreis},
|
||||
booktitle={Advances in Neural Information Processing Systems (NeurIPS)},
|
||||
year={2022}
|
||||
}</code></pre>
|
||||
|
|
Loading…
Reference in a new issue