from torch.autograd import Function # from modules.functional.backend import _backend from third_party.pvcnn.functional.backend import _backend __all__ = ['grouping'] class Grouping(Function): @staticmethod def forward(ctx, features, indices): """ :param ctx: :param features: features of points, FloatTensor[B, C, N] :param indices: neighbor indices of centers, IntTensor[B, M, U], M is #centers, U is #neighbors :return: grouped_features: grouped features, FloatTensor[B, C, M, U] """ features = features.contiguous() indices = indices.contiguous() ctx.save_for_backward(indices) ctx.num_points = features.size(-1) return _backend.grouping_forward(features, indices) @staticmethod def backward(ctx, grad_output): indices, = ctx.saved_tensors grad_features = _backend.grouping_backward(grad_output.contiguous(), indices, ctx.num_points) return grad_features, None grouping = Grouping.apply