loss="mse_sum" NGPU=$1 ## 1 #8 num_node=2 mem=32 BS=10 lr=2e-4 ENT="python train_dist.py --num_process_per_node $NGPU " train_vae=False cmt="lion" ckpt="./lion_ckpt/unconditional/car/checkpoints/vae_only.pt" $ENT \ --config "./lion_ckpt/unconditional/car/cfg.yml" \ latent_pts.pvd_mse_loss 1 \ vis_latent_point 1 \ num_val_samples 24 \ ddpm.ema 1 \ ddpm.use_bn False ddpm.use_gn True \ ddpm.time_dim 64 \ ddpm.beta_T 0.02 \ sde.vae_checkpoint $ckpt \ sde.learning_rate_dae $lr sde.learning_rate_min_dae $lr \ trainer.epochs 18000 \ sde.num_channels_dae 2048 \ sde.dropout 0.3 \ latent_pts.style_prior 'models.score_sde.resnet.PriorSEDrop' \ sde.prior_model 'models.latent_points_ada_localprior.PVCNN2Prior' \ sde.train_vae $train_vae \ sde.embedding_scale 1.0 \ viz.save_freq 1000 \ viz.viz_freq -200 viz.log_freq -1 viz.val_freq -10000 \ data.batch_size $BS \ trainer.type 'trainers.train_2prior' \ cmt $cmt