81 lines
2.7 KiB
Python
81 lines
2.7 KiB
Python
from torch import nn
|
|
from torch.autograd import Function
|
|
import torch
|
|
import importlib
|
|
import os
|
|
chamfer_found = importlib.find_loader("chamfer_2D") is not None
|
|
if not chamfer_found:
|
|
## Cool trick from https://github.com/chrdiller
|
|
print("Jitting Chamfer 2D")
|
|
cur_path = os.path.dirname(os.path.abspath(__file__))
|
|
build_path = cur_path.replace('chamfer2D', 'tmp')
|
|
os.makedirs(build_path, exist_ok=True)
|
|
|
|
from torch.utils.cpp_extension import load
|
|
chamfer_2D = load(name="chamfer_2D",
|
|
sources=[
|
|
"/".join(os.path.abspath(__file__).split('/')[:-1] + ["chamfer_cuda.cpp"]),
|
|
"/".join(os.path.abspath(__file__).split('/')[:-1] + ["chamfer2D.cu"]),
|
|
], build_directory=build_path)
|
|
print("Loaded JIT 2D CUDA chamfer distance")
|
|
|
|
else:
|
|
import chamfer_2D
|
|
print("Loaded compiled 2D CUDA chamfer distance")
|
|
|
|
# Chamfer's distance module @thibaultgroueix
|
|
# GPU tensors only
|
|
class chamfer_2DFunction(Function):
|
|
@staticmethod
|
|
def forward(ctx, xyz1, xyz2):
|
|
batchsize, n, dim = xyz1.size()
|
|
assert dim==2, "Wrong last dimension for the chamfer distance 's input! Check with .size()"
|
|
_, m, dim = xyz2.size()
|
|
assert dim==2, "Wrong last dimension for the chamfer distance 's input! Check with .size()"
|
|
device = xyz1.device
|
|
|
|
device = xyz1.device
|
|
|
|
dist1 = torch.zeros(batchsize, n)
|
|
dist2 = torch.zeros(batchsize, m)
|
|
|
|
idx1 = torch.zeros(batchsize, n).type(torch.IntTensor)
|
|
idx2 = torch.zeros(batchsize, m).type(torch.IntTensor)
|
|
|
|
dist1 = dist1.to(device)
|
|
dist2 = dist2.to(device)
|
|
idx1 = idx1.to(device)
|
|
idx2 = idx2.to(device)
|
|
torch.cuda.set_device(device)
|
|
|
|
chamfer_2D.forward(xyz1, xyz2, dist1, dist2, idx1, idx2)
|
|
ctx.save_for_backward(xyz1, xyz2, idx1, idx2)
|
|
return dist1, dist2, idx1, idx2
|
|
|
|
@staticmethod
|
|
def backward(ctx, graddist1, graddist2, gradidx1, gradidx2):
|
|
xyz1, xyz2, idx1, idx2 = ctx.saved_tensors
|
|
graddist1 = graddist1.contiguous()
|
|
graddist2 = graddist2.contiguous()
|
|
device = graddist1.device
|
|
|
|
gradxyz1 = torch.zeros(xyz1.size())
|
|
gradxyz2 = torch.zeros(xyz2.size())
|
|
|
|
gradxyz1 = gradxyz1.to(device)
|
|
gradxyz2 = gradxyz2.to(device)
|
|
chamfer_2D.backward(
|
|
xyz1, xyz2, gradxyz1, gradxyz2, graddist1, graddist2, idx1, idx2
|
|
)
|
|
return gradxyz1, gradxyz2
|
|
|
|
|
|
class chamfer_2DDist(nn.Module):
|
|
def __init__(self):
|
|
super(chamfer_2DDist, self).__init__()
|
|
|
|
def forward(self, input1, input2):
|
|
input1 = input1.contiguous()
|
|
input2 = input2.contiguous()
|
|
return chamfer_2DFunction.apply(input1, input2)
|