LION/third_party/pvcnn/functional/grouping.py
2023-01-23 00:14:49 -05:00

34 lines
1.1 KiB
Python

from torch.autograd import Function
# from modules.functional.backend import _backend
from third_party.pvcnn.functional.backend import _backend
__all__ = ['grouping']
class Grouping(Function):
@staticmethod
def forward(ctx, features, indices):
"""
:param ctx:
:param features: features of points, FloatTensor[B, C, N]
:param indices: neighbor indices of centers, IntTensor[B, M, U], M is #centers, U is #neighbors
:return:
grouped_features: grouped features, FloatTensor[B, C, M, U]
"""
features = features.contiguous()
indices = indices.contiguous()
ctx.save_for_backward(indices)
ctx.num_points = features.size(-1)
return _backend.grouping_forward(features, indices)
@staticmethod
def backward(ctx, grad_output):
indices, = ctx.saved_tensors
grad_features = _backend.grouping_backward(grad_output.contiguous(),
indices, ctx.num_points)
return grad_features, None
grouping = Grouping.apply