323 lines
10 KiB
Python
323 lines
10 KiB
Python
|
import torch
|
||
|
import numpy as np
|
||
|
import warnings
|
||
|
from scipy.stats import entropy
|
||
|
from sklearn.neighbors import NearestNeighbors
|
||
|
from numpy.linalg import norm
|
||
|
|
||
|
from metrics.PyTorchEMD.emd import earth_mover_distance as EMD
|
||
|
from metrics.ChamferDistancePytorch.chamfer3D.dist_chamfer_3D import chamfer_3DDist
|
||
|
from metrics.ChamferDistancePytorch.fscore import fscore
|
||
|
from tqdm import tqdm
|
||
|
|
||
|
cham3D = chamfer_3DDist()
|
||
|
|
||
|
# Borrow from https://github.com/ThibaultGROUEIX/AtlasNet
|
||
|
def distChamfer(a, b):
|
||
|
x, y = a, b
|
||
|
bs, num_points, points_dim = x.size()
|
||
|
xx = torch.bmm(x, x.transpose(2, 1))
|
||
|
yy = torch.bmm(y, y.transpose(2, 1))
|
||
|
zz = torch.bmm(x, y.transpose(2, 1))
|
||
|
diag_ind = torch.arange(0, num_points).to(a).long()
|
||
|
rx = xx[:, diag_ind, diag_ind].unsqueeze(1).expand_as(xx)
|
||
|
ry = yy[:, diag_ind, diag_ind].unsqueeze(1).expand_as(yy)
|
||
|
P = (rx.transpose(2, 1) + ry - 2 * zz)
|
||
|
return P.min(1)[0], P.min(2)[0]
|
||
|
|
||
|
|
||
|
def EMD_CD(sample_pcs, ref_pcs, batch_size, reduced=True):
|
||
|
N_sample = sample_pcs.shape[0]
|
||
|
N_ref = ref_pcs.shape[0]
|
||
|
assert N_sample == N_ref, "REF:%d SMP:%d" % (N_ref, N_sample)
|
||
|
|
||
|
cd_lst = []
|
||
|
emd_lst = []
|
||
|
fs_lst = []
|
||
|
iterator = range(0, N_sample, batch_size)
|
||
|
|
||
|
for b_start in iterator:
|
||
|
b_end = min(N_sample, b_start + batch_size)
|
||
|
sample_batch = sample_pcs[b_start:b_end]
|
||
|
ref_batch = ref_pcs[b_start:b_end]
|
||
|
|
||
|
dl, dr, _, _ = cham3D(sample_batch.cuda(), ref_batch.cuda())
|
||
|
fs = fscore(dl, dr)[0].cpu()
|
||
|
fs_lst.append(fs)
|
||
|
cd_lst.append(dl.mean(dim=1) + dr.mean(dim=1))
|
||
|
|
||
|
emd_batch = EMD(sample_batch.cuda(), ref_batch.cuda(), transpose=False)
|
||
|
emd_lst.append(emd_batch)
|
||
|
|
||
|
if reduced:
|
||
|
cd = torch.cat(cd_lst).mean()
|
||
|
emd = torch.cat(emd_lst).mean()
|
||
|
else:
|
||
|
cd = torch.cat(cd_lst)
|
||
|
emd = torch.cat(emd_lst)
|
||
|
fs_lst = torch.cat(fs_lst).mean()
|
||
|
results = {
|
||
|
'MMD-CD': cd,
|
||
|
'MMD-EMD': emd,
|
||
|
'fscore': fs_lst
|
||
|
}
|
||
|
return results
|
||
|
|
||
|
def _pairwise_EMD_CD_(sample_pcs, ref_pcs, batch_size, accelerated_cd=True):
|
||
|
N_sample = sample_pcs.shape[0]
|
||
|
N_ref = ref_pcs.shape[0]
|
||
|
all_cd = []
|
||
|
all_emd = []
|
||
|
iterator = range(N_sample)
|
||
|
for sample_b_start in tqdm(iterator):
|
||
|
sample_batch = sample_pcs[sample_b_start]
|
||
|
|
||
|
cd_lst = []
|
||
|
emd_lst = []
|
||
|
for ref_b_start in range(0, N_ref, batch_size):
|
||
|
ref_b_end = min(N_ref, ref_b_start + batch_size)
|
||
|
ref_batch = ref_pcs[ref_b_start:ref_b_end]
|
||
|
|
||
|
batch_size_ref = ref_batch.size(0)
|
||
|
sample_batch_exp = sample_batch.view(1, -1, 3).expand(batch_size_ref, -1, -1)
|
||
|
sample_batch_exp = sample_batch_exp.contiguous()
|
||
|
|
||
|
dl, dr, _, _ = cham3D(sample_batch_exp.cuda(), ref_batch.cuda())
|
||
|
cd_lst.append((dl.mean(dim=1) + dr.mean(dim=1)).view(1, -1).detach().cpu())
|
||
|
|
||
|
emd_batch = EMD(sample_batch_exp.cuda(), ref_batch.cuda(), transpose=False)
|
||
|
emd_lst.append(emd_batch.view(1, -1).detach().cpu())
|
||
|
|
||
|
cd_lst = torch.cat(cd_lst, dim=1)
|
||
|
emd_lst = torch.cat(emd_lst, dim=1)
|
||
|
all_cd.append(cd_lst)
|
||
|
all_emd.append(emd_lst)
|
||
|
|
||
|
all_cd = torch.cat(all_cd, dim=0) # N_sample, N_ref
|
||
|
all_emd = torch.cat(all_emd, dim=0) # N_sample, N_ref
|
||
|
|
||
|
return all_cd, all_emd
|
||
|
|
||
|
|
||
|
# Adapted from https://github.com/xuqiantong/GAN-Metrics/blob/master/framework/metric.py
|
||
|
def knn(Mxx, Mxy, Myy, k, sqrt=False):
|
||
|
n0 = Mxx.size(0)
|
||
|
n1 = Myy.size(0)
|
||
|
label = torch.cat((torch.ones(n0), torch.zeros(n1))).to(Mxx)
|
||
|
M = torch.cat((torch.cat((Mxx, Mxy), 1), torch.cat((Mxy.transpose(0, 1), Myy), 1)), 0)
|
||
|
if sqrt:
|
||
|
M = M.abs().sqrt()
|
||
|
INFINITY = float('inf')
|
||
|
val, idx = (M + torch.diag(INFINITY * torch.ones(n0 + n1).to(Mxx))).topk(k, 0, False)
|
||
|
|
||
|
count = torch.zeros(n0 + n1).to(Mxx)
|
||
|
for i in range(0, k):
|
||
|
count = count + label.index_select(0, idx[i])
|
||
|
pred = torch.ge(count, (float(k) / 2) * torch.ones(n0 + n1).to(Mxx)).float()
|
||
|
|
||
|
s = {
|
||
|
'tp': (pred * label).sum(),
|
||
|
'fp': (pred * (1 - label)).sum(),
|
||
|
'fn': ((1 - pred) * label).sum(),
|
||
|
'tn': ((1 - pred) * (1 - label)).sum(),
|
||
|
}
|
||
|
|
||
|
s.update({
|
||
|
'precision': s['tp'] / (s['tp'] + s['fp'] + 1e-10),
|
||
|
'recall': s['tp'] / (s['tp'] + s['fn'] + 1e-10),
|
||
|
'acc_t': s['tp'] / (s['tp'] + s['fn'] + 1e-10),
|
||
|
'acc_f': s['tn'] / (s['tn'] + s['fp'] + 1e-10),
|
||
|
'acc': torch.eq(label, pred).float().mean(),
|
||
|
})
|
||
|
return s
|
||
|
|
||
|
|
||
|
def lgan_mmd_cov(all_dist):
|
||
|
N_sample, N_ref = all_dist.size(0), all_dist.size(1)
|
||
|
min_val_fromsmp, min_idx = torch.min(all_dist, dim=1)
|
||
|
min_val, _ = torch.min(all_dist, dim=0)
|
||
|
mmd = min_val.mean()
|
||
|
mmd_smp = min_val_fromsmp.mean()
|
||
|
cov = float(min_idx.unique().view(-1).size(0)) / float(N_ref)
|
||
|
cov = torch.tensor(cov).to(all_dist)
|
||
|
return {
|
||
|
'lgan_mmd': mmd,
|
||
|
'lgan_cov': cov,
|
||
|
'lgan_mmd_smp': mmd_smp,
|
||
|
}
|
||
|
|
||
|
|
||
|
def compute_all_metrics(sample_pcs, ref_pcs, batch_size):
|
||
|
results = {}
|
||
|
|
||
|
M_rs_cd, M_rs_emd = _pairwise_EMD_CD_(ref_pcs, sample_pcs, batch_size)
|
||
|
|
||
|
res_cd = lgan_mmd_cov(M_rs_cd.t())
|
||
|
results.update({
|
||
|
"%s-CD" % k: v for k, v in res_cd.items()
|
||
|
})
|
||
|
|
||
|
res_emd = lgan_mmd_cov(M_rs_emd.t())
|
||
|
results.update({
|
||
|
"%s-EMD" % k: v for k, v in res_emd.items()
|
||
|
})
|
||
|
|
||
|
M_rr_cd, M_rr_emd = _pairwise_EMD_CD_(ref_pcs, ref_pcs, batch_size)
|
||
|
M_ss_cd, M_ss_emd = _pairwise_EMD_CD_(sample_pcs, sample_pcs, batch_size)
|
||
|
|
||
|
# 1-NN results
|
||
|
one_nn_cd_res = knn(M_rr_cd, M_rs_cd, M_ss_cd, 1, sqrt=False)
|
||
|
results.update({
|
||
|
"1-NN-CD-%s" % k: v for k, v in one_nn_cd_res.items() if 'acc' in k
|
||
|
})
|
||
|
one_nn_emd_res = knn(M_rr_emd, M_rs_emd, M_ss_emd, 1, sqrt=False)
|
||
|
results.update({
|
||
|
"1-NN-EMD-%s" % k: v for k, v in one_nn_emd_res.items() if 'acc' in k
|
||
|
})
|
||
|
|
||
|
return results
|
||
|
|
||
|
|
||
|
#######################################################
|
||
|
# JSD : from https://github.com/optas/latent_3d_points
|
||
|
#######################################################
|
||
|
def unit_cube_grid_point_cloud(resolution, clip_sphere=False):
|
||
|
"""Returns the center coordinates of each cell of a 3D grid with resolution^3 cells,
|
||
|
that is placed in the unit-cube.
|
||
|
If clip_sphere it True it drops the "corner" cells that lie outside the unit-sphere.
|
||
|
"""
|
||
|
grid = np.ndarray((resolution, resolution, resolution, 3), np.float32)
|
||
|
spacing = 1.0 / float(resolution - 1)
|
||
|
for i in range(resolution):
|
||
|
for j in range(resolution):
|
||
|
for k in range(resolution):
|
||
|
grid[i, j, k, 0] = i * spacing - 0.5
|
||
|
grid[i, j, k, 1] = j * spacing - 0.5
|
||
|
grid[i, j, k, 2] = k * spacing - 0.5
|
||
|
|
||
|
if clip_sphere:
|
||
|
grid = grid.reshape(-1, 3)
|
||
|
grid = grid[norm(grid, axis=1) <= 0.5]
|
||
|
|
||
|
return grid, spacing
|
||
|
|
||
|
|
||
|
def jsd_between_point_cloud_sets(sample_pcs, ref_pcs, resolution=28):
|
||
|
"""Computes the JSD between two sets of point-clouds, as introduced in the paper
|
||
|
```Learning Representations And Generative Models For 3D Point Clouds```.
|
||
|
Args:
|
||
|
sample_pcs: (np.ndarray S1xR2x3) S1 point-clouds, each of R1 points.
|
||
|
ref_pcs: (np.ndarray S2xR2x3) S2 point-clouds, each of R2 points.
|
||
|
resolution: (int) grid-resolution. Affects granularity of measurements.
|
||
|
"""
|
||
|
in_unit_sphere = True
|
||
|
sample_grid_var = entropy_of_occupancy_grid(sample_pcs, resolution, in_unit_sphere)[1]
|
||
|
ref_grid_var = entropy_of_occupancy_grid(ref_pcs, resolution, in_unit_sphere)[1]
|
||
|
return jensen_shannon_divergence(sample_grid_var, ref_grid_var)
|
||
|
|
||
|
|
||
|
def entropy_of_occupancy_grid(pclouds, grid_resolution, in_sphere=False, verbose=False):
|
||
|
"""Given a collection of point-clouds, estimate the entropy of the random variables
|
||
|
corresponding to occupancy-grid activation patterns.
|
||
|
Inputs:
|
||
|
pclouds: (numpy array) #point-clouds x points per point-cloud x 3
|
||
|
grid_resolution (int) size of occupancy grid that will be used.
|
||
|
"""
|
||
|
epsilon = 10e-4
|
||
|
bound = 0.5 + epsilon
|
||
|
if abs(np.max(pclouds)) > bound or abs(np.min(pclouds)) > bound:
|
||
|
if verbose:
|
||
|
warnings.warn('Point-clouds are not in unit cube.')
|
||
|
|
||
|
if in_sphere and np.max(np.sqrt(np.sum(pclouds ** 2, axis=2))) > bound:
|
||
|
if verbose:
|
||
|
warnings.warn('Point-clouds are not in unit sphere.')
|
||
|
|
||
|
grid_coordinates, _ = unit_cube_grid_point_cloud(grid_resolution, in_sphere)
|
||
|
grid_coordinates = grid_coordinates.reshape(-1, 3)
|
||
|
grid_counters = np.zeros(len(grid_coordinates))
|
||
|
grid_bernoulli_rvars = np.zeros(len(grid_coordinates))
|
||
|
nn = NearestNeighbors(n_neighbors=1).fit(grid_coordinates)
|
||
|
|
||
|
for pc in pclouds:
|
||
|
_, indices = nn.kneighbors(pc)
|
||
|
indices = np.squeeze(indices)
|
||
|
for i in indices:
|
||
|
grid_counters[i] += 1
|
||
|
indices = np.unique(indices)
|
||
|
for i in indices:
|
||
|
grid_bernoulli_rvars[i] += 1
|
||
|
|
||
|
acc_entropy = 0.0
|
||
|
n = float(len(pclouds))
|
||
|
for g in grid_bernoulli_rvars:
|
||
|
if g > 0:
|
||
|
p = float(g) / n
|
||
|
acc_entropy += entropy([p, 1.0 - p])
|
||
|
|
||
|
return acc_entropy / len(grid_counters), grid_counters
|
||
|
|
||
|
|
||
|
def jensen_shannon_divergence(P, Q):
|
||
|
if np.any(P < 0) or np.any(Q < 0):
|
||
|
raise ValueError('Negative values.')
|
||
|
if len(P) != len(Q):
|
||
|
raise ValueError('Non equal size.')
|
||
|
|
||
|
P_ = P / np.sum(P) # Ensure probabilities.
|
||
|
Q_ = Q / np.sum(Q)
|
||
|
|
||
|
e1 = entropy(P_, base=2)
|
||
|
e2 = entropy(Q_, base=2)
|
||
|
e_sum = entropy((P_ + Q_) / 2.0, base=2)
|
||
|
res = e_sum - ((e1 + e2) / 2.0)
|
||
|
|
||
|
res2 = _jsdiv(P_, Q_)
|
||
|
|
||
|
if not np.allclose(res, res2, atol=10e-5, rtol=0):
|
||
|
warnings.warn('Numerical values of two JSD methods don\'t agree.')
|
||
|
|
||
|
return res
|
||
|
|
||
|
|
||
|
def _jsdiv(P, Q):
|
||
|
"""another way of computing JSD"""
|
||
|
|
||
|
def _kldiv(A, B):
|
||
|
a = A.copy()
|
||
|
b = B.copy()
|
||
|
idx = np.logical_and(a > 0, b > 0)
|
||
|
a = a[idx]
|
||
|
b = b[idx]
|
||
|
return np.sum([v for v in a * np.log2(a / b)])
|
||
|
|
||
|
P_ = P / np.sum(P)
|
||
|
Q_ = Q / np.sum(Q)
|
||
|
|
||
|
M = 0.5 * (P_ + Q_)
|
||
|
|
||
|
return 0.5 * (_kldiv(P_, M) + _kldiv(Q_, M))
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
B, N = 2, 10
|
||
|
x = torch.rand(B, N, 3)
|
||
|
y = torch.rand(B, N, 3)
|
||
|
|
||
|
min_l, min_r = distChamfer(x.cuda(), y.cuda())
|
||
|
print(min_l.shape)
|
||
|
print(min_r.shape)
|
||
|
|
||
|
l_dist = min_l.mean().cpu().detach().item()
|
||
|
r_dist = min_r.mean().cpu().detach().item()
|
||
|
print(l_dist, r_dist)
|
||
|
|
||
|
|
||
|
emd_batch = EMD(x.cuda(), y.cuda(), False)
|
||
|
print(emd_batch.shape)
|
||
|
print(emd_batch.mean().detach().item())
|
||
|
|
||
|
jsd = jsd_between_point_cloud_sets(x.numpy(), y.numpy())
|
||
|
print(jsd)
|
||
|
|