600 lines
26 KiB
Python
600 lines
26 KiB
Python
|
|
||
|
from pprint import pprint
|
||
|
from tqdm import tqdm
|
||
|
import torch.nn as nn
|
||
|
import torch.utils.data
|
||
|
|
||
|
import argparse
|
||
|
from torch.distributions import Normal
|
||
|
from utils.visualize import *
|
||
|
from utils.file_utils import *
|
||
|
from utils.mitsuba_renderer import write_to_xml_batch
|
||
|
from model.pvcnn_completion import PVCNN2Base
|
||
|
|
||
|
from datasets.shapenet_data_pc import ShapeNet15kPointClouds
|
||
|
from datasets.partnet import GANdatasetPartNet
|
||
|
import trimesh
|
||
|
import csv
|
||
|
import numpy as np
|
||
|
import random
|
||
|
from plyfile import PlyData, PlyElement
|
||
|
|
||
|
|
||
|
def write_ply(points, filename, text=False):
|
||
|
""" input: Nx3, write points to filename as PLY format. """
|
||
|
points = [(points[i,0], points[i,1], points[i,2]) for i in range(points.shape[0])]
|
||
|
vertex = np.array(points, dtype=[('x', 'f4'), ('y', 'f4'),('z', 'f4')])
|
||
|
el = PlyElement.describe(vertex, 'vertex', comments=['vertices'])
|
||
|
with open(filename, mode='wb') as f:
|
||
|
PlyData([el], text=text).write(f)
|
||
|
|
||
|
'''
|
||
|
models
|
||
|
'''
|
||
|
def normal_kl(mean1, logvar1, mean2, logvar2):
|
||
|
"""
|
||
|
KL divergence between normal distributions parameterized by mean and log-variance.
|
||
|
"""
|
||
|
return 0.5 * (-1.0 + logvar2 - logvar1 + torch.exp(logvar1 - logvar2)
|
||
|
+ (mean1 - mean2)**2 * torch.exp(-logvar2))
|
||
|
|
||
|
def discretized_gaussian_log_likelihood(x, *, means, log_scales):
|
||
|
# Assumes data is integers [0, 1]
|
||
|
assert x.shape == means.shape == log_scales.shape
|
||
|
px0 = Normal(torch.zeros_like(means), torch.ones_like(log_scales))
|
||
|
|
||
|
centered_x = x - means
|
||
|
inv_stdv = torch.exp(-log_scales)
|
||
|
plus_in = inv_stdv * (centered_x + 0.5)
|
||
|
cdf_plus = px0.cdf(plus_in)
|
||
|
min_in = inv_stdv * (centered_x - .5)
|
||
|
cdf_min = px0.cdf(min_in)
|
||
|
log_cdf_plus = torch.log(torch.max(cdf_plus, torch.ones_like(cdf_plus)*1e-12))
|
||
|
log_one_minus_cdf_min = torch.log(torch.max(1. - cdf_min, torch.ones_like(cdf_min)*1e-12))
|
||
|
cdf_delta = cdf_plus - cdf_min
|
||
|
|
||
|
log_probs = torch.where(
|
||
|
x < 0.001, log_cdf_plus,
|
||
|
torch.where(x > 0.999, log_one_minus_cdf_min,
|
||
|
torch.log(torch.max(cdf_delta, torch.ones_like(cdf_delta)*1e-12))))
|
||
|
assert log_probs.shape == x.shape
|
||
|
return log_probs
|
||
|
|
||
|
|
||
|
|
||
|
class GaussianDiffusion:
|
||
|
def __init__(self, betas, loss_type, model_mean_type, model_var_type, sv_points):
|
||
|
self.loss_type = loss_type
|
||
|
self.model_mean_type = model_mean_type
|
||
|
self.model_var_type = model_var_type
|
||
|
assert isinstance(betas, np.ndarray)
|
||
|
self.np_betas = betas = betas.astype(np.float64) # computations here in float64 for accuracy
|
||
|
assert (betas > 0).all() and (betas <= 1).all()
|
||
|
timesteps, = betas.shape
|
||
|
self.num_timesteps = int(timesteps)
|
||
|
self.sv_points = sv_points
|
||
|
# initialize twice the actual length so we can keep running for eval
|
||
|
# betas = np.concatenate([betas, np.full_like(betas[:int(0.2*len(betas))], betas[-1])])
|
||
|
|
||
|
alphas = 1. - betas
|
||
|
alphas_cumprod = torch.from_numpy(np.cumprod(alphas, axis=0)).float()
|
||
|
alphas_cumprod_prev = torch.from_numpy(np.append(1., alphas_cumprod[:-1])).float()
|
||
|
|
||
|
self.betas = torch.from_numpy(betas).float()
|
||
|
self.alphas_cumprod = alphas_cumprod.float()
|
||
|
self.alphas_cumprod_prev = alphas_cumprod_prev.float()
|
||
|
|
||
|
# calculations for diffusion q(x_t | x_{t-1}) and others
|
||
|
self.sqrt_alphas_cumprod = torch.sqrt(alphas_cumprod).float()
|
||
|
self.sqrt_one_minus_alphas_cumprod = torch.sqrt(1. - alphas_cumprod).float()
|
||
|
self.log_one_minus_alphas_cumprod = torch.log(1. - alphas_cumprod).float()
|
||
|
self.sqrt_recip_alphas_cumprod = torch.sqrt(1. / alphas_cumprod).float()
|
||
|
self.sqrt_recipm1_alphas_cumprod = torch.sqrt(1. / alphas_cumprod - 1).float()
|
||
|
|
||
|
betas = torch.from_numpy(betas).float()
|
||
|
alphas = torch.from_numpy(alphas).float()
|
||
|
# calculations for posterior q(x_{t-1} | x_t, x_0)
|
||
|
posterior_variance = betas * (1. - alphas_cumprod_prev) / (1. - alphas_cumprod)
|
||
|
# above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t)
|
||
|
self.posterior_variance = posterior_variance
|
||
|
# below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain
|
||
|
self.posterior_log_variance_clipped = torch.log(torch.max(posterior_variance, 1e-20 * torch.ones_like(posterior_variance)))
|
||
|
self.posterior_mean_coef1 = betas * torch.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod)
|
||
|
self.posterior_mean_coef2 = (1. - alphas_cumprod_prev) * torch.sqrt(alphas) / (1. - alphas_cumprod)
|
||
|
|
||
|
@staticmethod
|
||
|
def _extract(a, t, x_shape):
|
||
|
"""
|
||
|
Extract some coefficients at specified timesteps,
|
||
|
then reshape to [batch_size, 1, 1, 1, 1, ...] for broadcasting purposes.
|
||
|
"""
|
||
|
bs, = t.shape
|
||
|
assert x_shape[0] == bs
|
||
|
out = torch.gather(a, 0, t)
|
||
|
assert out.shape == torch.Size([bs])
|
||
|
return torch.reshape(out, [bs] + ((len(x_shape) - 1) * [1]))
|
||
|
|
||
|
|
||
|
|
||
|
def q_mean_variance(self, x_start, t):
|
||
|
mean = self._extract(self.sqrt_alphas_cumprod.to(x_start.device), t, x_start.shape) * x_start
|
||
|
variance = self._extract(1. - self.alphas_cumprod.to(x_start.device), t, x_start.shape)
|
||
|
log_variance = self._extract(self.log_one_minus_alphas_cumprod.to(x_start.device), t, x_start.shape)
|
||
|
return mean, variance, log_variance
|
||
|
|
||
|
def q_sample(self, x_start, t, noise=None):
|
||
|
"""
|
||
|
Diffuse the data (t == 0 means diffused for 1 step)
|
||
|
"""
|
||
|
if noise is None:
|
||
|
noise = torch.randn(x_start.shape, device=x_start.device)
|
||
|
assert noise.shape == x_start.shape
|
||
|
return (
|
||
|
self._extract(self.sqrt_alphas_cumprod.to(x_start.device), t, x_start.shape) * x_start +
|
||
|
self._extract(self.sqrt_one_minus_alphas_cumprod.to(x_start.device), t, x_start.shape) * noise
|
||
|
)
|
||
|
|
||
|
|
||
|
def q_posterior_mean_variance(self, x_start, x_t, t):
|
||
|
"""
|
||
|
Compute the mean and variance of the diffusion posterior q(x_{t-1} | x_t, x_0)
|
||
|
"""
|
||
|
assert x_start.shape == x_t.shape
|
||
|
posterior_mean = (
|
||
|
self._extract(self.posterior_mean_coef1.to(x_start.device), t, x_t.shape) * x_start +
|
||
|
self._extract(self.posterior_mean_coef2.to(x_start.device), t, x_t.shape) * x_t
|
||
|
)
|
||
|
posterior_variance = self._extract(self.posterior_variance.to(x_start.device), t, x_t.shape)
|
||
|
posterior_log_variance_clipped = self._extract(self.posterior_log_variance_clipped.to(x_start.device), t, x_t.shape)
|
||
|
assert (posterior_mean.shape[0] == posterior_variance.shape[0] == posterior_log_variance_clipped.shape[0] ==
|
||
|
x_start.shape[0])
|
||
|
return posterior_mean, posterior_variance, posterior_log_variance_clipped
|
||
|
|
||
|
|
||
|
def p_mean_variance(self, denoise_fn, data, t, clip_denoised: bool, return_pred_xstart: bool):
|
||
|
|
||
|
model_output = denoise_fn(data, t)[:,:,self.sv_points:]
|
||
|
|
||
|
|
||
|
if self.model_var_type in ['fixedsmall', 'fixedlarge']:
|
||
|
# below: only log_variance is used in the KL computations
|
||
|
model_variance, model_log_variance = {
|
||
|
# for fixedlarge, we set the initial (log-)variance like so to get a better decoder log likelihood
|
||
|
'fixedlarge': (self.betas.to(data.device),
|
||
|
torch.log(torch.cat([self.posterior_variance[1:2], self.betas[1:]])).to(data.device)),
|
||
|
'fixedsmall': (self.posterior_variance.to(data.device), self.posterior_log_variance_clipped.to(data.device)),
|
||
|
}[self.model_var_type]
|
||
|
model_variance = self._extract(model_variance, t, data.shape) * torch.ones_like(model_output)
|
||
|
model_log_variance = self._extract(model_log_variance, t, data.shape) * torch.ones_like(model_output)
|
||
|
else:
|
||
|
raise NotImplementedError(self.model_var_type)
|
||
|
|
||
|
if self.model_mean_type == 'eps':
|
||
|
x_recon = self._predict_xstart_from_eps(data[:,:,self.sv_points:], t=t, eps=model_output)
|
||
|
|
||
|
|
||
|
model_mean, _, _ = self.q_posterior_mean_variance(x_start=x_recon, x_t=data[:,:,self.sv_points:], t=t)
|
||
|
else:
|
||
|
raise NotImplementedError(self.loss_type)
|
||
|
|
||
|
|
||
|
assert model_mean.shape == x_recon.shape
|
||
|
assert model_variance.shape == model_log_variance.shape
|
||
|
if return_pred_xstart:
|
||
|
return model_mean, model_variance, model_log_variance, x_recon
|
||
|
else:
|
||
|
return model_mean, model_variance, model_log_variance
|
||
|
|
||
|
def _predict_xstart_from_eps(self, x_t, t, eps):
|
||
|
assert x_t.shape == eps.shape
|
||
|
return (
|
||
|
self._extract(self.sqrt_recip_alphas_cumprod.to(x_t.device), t, x_t.shape) * x_t -
|
||
|
self._extract(self.sqrt_recipm1_alphas_cumprod.to(x_t.device), t, x_t.shape) * eps
|
||
|
)
|
||
|
|
||
|
''' samples '''
|
||
|
|
||
|
def p_sample(self, denoise_fn, data, t, noise_fn, clip_denoised=False, return_pred_xstart=False):
|
||
|
"""
|
||
|
Sample from the model
|
||
|
"""
|
||
|
model_mean, _, model_log_variance, pred_xstart = self.p_mean_variance(denoise_fn, data=data, t=t, clip_denoised=clip_denoised,
|
||
|
return_pred_xstart=True)
|
||
|
noise = noise_fn(size=model_mean.shape, dtype=model_mean.dtype, device=model_mean.device)
|
||
|
|
||
|
# no noise when t == 0
|
||
|
nonzero_mask = torch.reshape(1 - (t == 0).float(), [data.shape[0]] + [1] * (len(model_mean.shape) - 1))
|
||
|
|
||
|
sample = model_mean + nonzero_mask * torch.exp(0.5 * model_log_variance) * noise
|
||
|
sample = torch.cat([data[:, :, :self.sv_points], sample], dim=-1)
|
||
|
return (sample, pred_xstart) if return_pred_xstart else sample
|
||
|
|
||
|
|
||
|
def p_sample_loop(self, partial_x, denoise_fn, shape, device,
|
||
|
noise_fn=torch.randn, clip_denoised=True, keep_running=False):
|
||
|
"""
|
||
|
Generate samples
|
||
|
keep_running: True if we run 2 x num_timesteps, False if we just run num_timesteps
|
||
|
|
||
|
"""
|
||
|
|
||
|
assert isinstance(shape, (tuple, list))
|
||
|
img_t = torch.cat([partial_x, noise_fn(size=shape, dtype=torch.float, device=device)], dim=-1)
|
||
|
for t in reversed(range(0, self.num_timesteps if not keep_running else len(self.betas))):
|
||
|
t_ = torch.empty(shape[0], dtype=torch.int64, device=device).fill_(t)
|
||
|
img_t = self.p_sample(denoise_fn=denoise_fn, data=img_t,t=t_, noise_fn=noise_fn,
|
||
|
clip_denoised=clip_denoised, return_pred_xstart=False)
|
||
|
|
||
|
assert img_t[:,:,self.sv_points:].shape == shape
|
||
|
return img_t
|
||
|
|
||
|
def p_sample_loop_trajectory(self, denoise_fn, shape, device, freq,
|
||
|
noise_fn=torch.randn,clip_denoised=True, keep_running=False):
|
||
|
"""
|
||
|
Generate samples, returning intermediate images
|
||
|
Useful for visualizing how denoised images evolve over time
|
||
|
Args:
|
||
|
repeat_noise_steps (int): Number of denoising timesteps in which the same noise
|
||
|
is used across the batch. If >= 0, the initial noise is the same for all batch elemements.
|
||
|
"""
|
||
|
assert isinstance(shape, (tuple, list))
|
||
|
|
||
|
total_steps = self.num_timesteps if not keep_running else len(self.betas)
|
||
|
|
||
|
img_t = noise_fn(size=shape, dtype=torch.float, device=device)
|
||
|
imgs = [img_t]
|
||
|
for t in reversed(range(0,total_steps)):
|
||
|
|
||
|
t_ = torch.empty(shape[0], dtype=torch.int64, device=device).fill_(t)
|
||
|
img_t = self.p_sample(denoise_fn=denoise_fn, data=img_t, t=t_, noise_fn=noise_fn,
|
||
|
clip_denoised=clip_denoised,
|
||
|
return_pred_xstart=False)
|
||
|
if t % freq == 0 or t == total_steps-1:
|
||
|
imgs.append(img_t)
|
||
|
|
||
|
assert imgs[-1].shape == shape
|
||
|
return imgs
|
||
|
|
||
|
'''losses'''
|
||
|
|
||
|
def _vb_terms_bpd(self, denoise_fn, data_start, data_t, t, clip_denoised: bool, return_pred_xstart: bool):
|
||
|
true_mean, _, true_log_variance_clipped = self.q_posterior_mean_variance(x_start=data_start[:,:,self.sv_points:], x_t=data_t[:,:,self.sv_points:], t=t)
|
||
|
model_mean, _, model_log_variance, pred_xstart = self.p_mean_variance(
|
||
|
denoise_fn, data=data_t, t=t, clip_denoised=clip_denoised, return_pred_xstart=True)
|
||
|
|
||
|
kl = normal_kl(true_mean, true_log_variance_clipped, model_mean, model_log_variance)
|
||
|
kl = kl.mean(dim=list(range(1, len(model_mean.shape)))) / np.log(2.)
|
||
|
|
||
|
return (kl, pred_xstart) if return_pred_xstart else kl
|
||
|
|
||
|
def p_losses(self, denoise_fn, data_start, t, noise=None):
|
||
|
"""
|
||
|
Training loss calculation
|
||
|
"""
|
||
|
B, D, N = data_start.shape
|
||
|
assert t.shape == torch.Size([B])
|
||
|
|
||
|
if noise is None:
|
||
|
noise = torch.randn(data_start[:,:,self.sv_points:].shape, dtype=data_start.dtype, device=data_start.device)
|
||
|
|
||
|
data_t = self.q_sample(x_start=data_start[:,:,self.sv_points:], t=t, noise=noise)
|
||
|
|
||
|
if self.loss_type == 'mse':
|
||
|
# predict the noise instead of x_start. seems to be weighted naturally like SNR
|
||
|
eps_recon = denoise_fn(torch.cat([data_start[:,:,:self.sv_points], data_t], dim=-1), t)[:,:,self.sv_points:]
|
||
|
|
||
|
losses = ((noise - eps_recon)**2).mean(dim=list(range(1, len(data_start.shape))))
|
||
|
elif self.loss_type == 'kl':
|
||
|
losses = self._vb_terms_bpd(
|
||
|
denoise_fn=denoise_fn, data_start=data_start, data_t=data_t, t=t, clip_denoised=False,
|
||
|
return_pred_xstart=False)
|
||
|
else:
|
||
|
raise NotImplementedError(self.loss_type)
|
||
|
|
||
|
assert losses.shape == torch.Size([B])
|
||
|
return losses
|
||
|
|
||
|
'''debug'''
|
||
|
|
||
|
def _prior_bpd(self, x_start):
|
||
|
|
||
|
with torch.no_grad():
|
||
|
B, T = x_start.shape[0], self.num_timesteps
|
||
|
t_ = torch.empty(B, dtype=torch.int64, device=x_start.device).fill_(T-1)
|
||
|
qt_mean, _, qt_log_variance = self.q_mean_variance(x_start, t=t_)
|
||
|
kl_prior = normal_kl(mean1=qt_mean, logvar1=qt_log_variance,
|
||
|
mean2=torch.tensor([0.]).to(qt_mean), logvar2=torch.tensor([0.]).to(qt_log_variance))
|
||
|
assert kl_prior.shape == x_start.shape
|
||
|
return kl_prior.mean(dim=list(range(1, len(kl_prior.shape)))) / np.log(2.)
|
||
|
|
||
|
def calc_bpd_loop(self, denoise_fn, x_start, clip_denoised=True):
|
||
|
|
||
|
with torch.no_grad():
|
||
|
B, T = x_start.shape[0], self.num_timesteps
|
||
|
|
||
|
vals_bt_, mse_bt_= torch.zeros([B, T], device=x_start.device), torch.zeros([B, T], device=x_start.device)
|
||
|
for t in reversed(range(T)):
|
||
|
|
||
|
t_b = torch.empty(B, dtype=torch.int64, device=x_start.device).fill_(t)
|
||
|
# Calculate VLB term at the current timestep
|
||
|
data_t = torch.cat([x_start[:, :, :self.sv_points], self.q_sample(x_start=x_start[:, :, self.sv_points:], t=t_b)], dim=-1)
|
||
|
new_vals_b, pred_xstart = self._vb_terms_bpd(
|
||
|
denoise_fn, data_start=x_start, data_t=data_t, t=t_b,
|
||
|
clip_denoised=clip_denoised, return_pred_xstart=True)
|
||
|
# MSE for progressive prediction loss
|
||
|
assert pred_xstart.shape == x_start[:, :, self.sv_points:].shape
|
||
|
new_mse_b = ((pred_xstart - x_start[:, :, self.sv_points:]) ** 2).mean(dim=list(range(1, len(pred_xstart.shape))))
|
||
|
assert new_vals_b.shape == new_mse_b.shape == torch.Size([B])
|
||
|
# Insert the calculated term into the tensor of all terms
|
||
|
mask_bt = t_b[:, None]==torch.arange(T, device=t_b.device)[None, :].float()
|
||
|
vals_bt_ = vals_bt_ * (~mask_bt) + new_vals_b[:, None] * mask_bt
|
||
|
mse_bt_ = mse_bt_ * (~mask_bt) + new_mse_b[:, None] * mask_bt
|
||
|
assert mask_bt.shape == vals_bt_.shape == vals_bt_.shape == torch.Size([B, T])
|
||
|
|
||
|
prior_bpd_b = self._prior_bpd(x_start[:,:,self.sv_points:])
|
||
|
total_bpd_b = vals_bt_.sum(dim=1) + prior_bpd_b
|
||
|
assert vals_bt_.shape == mse_bt_.shape == torch.Size([B, T]) and \
|
||
|
total_bpd_b.shape == prior_bpd_b.shape == torch.Size([B])
|
||
|
return total_bpd_b.mean(), vals_bt_.mean(), prior_bpd_b.mean(), mse_bt_.mean()
|
||
|
|
||
|
|
||
|
class PVCNN2(PVCNN2Base):
|
||
|
sa_blocks = [
|
||
|
((32, 2, 32), (1024, 0.1, 32, (32, 64))),
|
||
|
((64, 3, 16), (256, 0.2, 32, (64, 128))),
|
||
|
((128, 3, 8), (64, 0.4, 32, (128, 256))),
|
||
|
(None, (16, 0.8, 32, (256, 256, 512))),
|
||
|
]
|
||
|
fp_blocks = [
|
||
|
((256, 256), (256, 3, 8)),
|
||
|
((256, 256), (256, 3, 8)),
|
||
|
((256, 128), (128, 2, 16)),
|
||
|
((128, 128, 64), (64, 2, 32)),
|
||
|
]
|
||
|
|
||
|
def __init__(self, num_classes, sv_points, embed_dim, use_att,dropout, extra_feature_channels=3, width_multiplier=1,
|
||
|
voxel_resolution_multiplier=1):
|
||
|
super().__init__(
|
||
|
num_classes=num_classes, sv_points=sv_points, embed_dim=embed_dim, use_att=use_att,
|
||
|
dropout=dropout, extra_feature_channels=extra_feature_channels,
|
||
|
width_multiplier=width_multiplier, voxel_resolution_multiplier=voxel_resolution_multiplier
|
||
|
)
|
||
|
|
||
|
|
||
|
class Model(nn.Module):
|
||
|
def __init__(self, args, betas, loss_type: str, model_mean_type: str, model_var_type:str):
|
||
|
super(Model, self).__init__()
|
||
|
self.diffusion = GaussianDiffusion(betas, loss_type, model_mean_type, model_var_type, args.svpoints)
|
||
|
|
||
|
self.model = PVCNN2(num_classes=args.nc, sv_points=args.svpoints, embed_dim=args.embed_dim, use_att=args.attention,
|
||
|
dropout=args.dropout, extra_feature_channels=0)
|
||
|
|
||
|
def prior_kl(self, x0):
|
||
|
return self.diffusion._prior_bpd(x0)
|
||
|
|
||
|
def all_kl(self, x0, clip_denoised=True):
|
||
|
total_bpd_b, vals_bt, prior_bpd_b, mse_bt = self.diffusion.calc_bpd_loop(self._denoise, x0, clip_denoised)
|
||
|
|
||
|
return {
|
||
|
'total_bpd_b': total_bpd_b,
|
||
|
'terms_bpd': vals_bt,
|
||
|
'prior_bpd_b': prior_bpd_b,
|
||
|
'mse_bt':mse_bt
|
||
|
}
|
||
|
|
||
|
|
||
|
def _denoise(self, data, t):
|
||
|
B, D,N= data.shape
|
||
|
assert data.dtype == torch.float
|
||
|
assert t.shape == torch.Size([B]) and t.dtype == torch.int64
|
||
|
|
||
|
out = self.model(data, t)
|
||
|
|
||
|
return out
|
||
|
|
||
|
def get_loss_iter(self, data, noises=None):
|
||
|
B, D, N = data.shape
|
||
|
t = torch.randint(0, self.diffusion.num_timesteps, size=(B,), device=data.device)
|
||
|
|
||
|
if noises is not None:
|
||
|
noises[t!=0] = torch.randn((t!=0).sum(), *noises.shape[1:]).to(noises)
|
||
|
|
||
|
losses = self.diffusion.p_losses(
|
||
|
denoise_fn=self._denoise, data_start=data, t=t, noise=noises)
|
||
|
assert losses.shape == t.shape == torch.Size([B])
|
||
|
return losses
|
||
|
|
||
|
def gen_samples(self, partial_x, shape, device, noise_fn=torch.randn,
|
||
|
clip_denoised=True,
|
||
|
keep_running=False):
|
||
|
return self.diffusion.p_sample_loop(partial_x, self._denoise, shape=shape, device=device, noise_fn=noise_fn,
|
||
|
clip_denoised=clip_denoised,
|
||
|
keep_running=keep_running)
|
||
|
|
||
|
|
||
|
def train(self):
|
||
|
self.model.train()
|
||
|
|
||
|
def eval(self):
|
||
|
self.model.eval()
|
||
|
|
||
|
def multi_gpu_wrapper(self, f):
|
||
|
self.model = f(self.model)
|
||
|
|
||
|
def get_betas(schedule_type, b_start, b_end, time_num):
|
||
|
if schedule_type == 'linear':
|
||
|
betas = np.linspace(b_start, b_end, time_num)
|
||
|
elif schedule_type == 'warm0.1':
|
||
|
|
||
|
betas = b_end * np.ones(time_num, dtype=np.float64)
|
||
|
warmup_time = int(time_num * 0.1)
|
||
|
betas[:warmup_time] = np.linspace(b_start, b_end, warmup_time, dtype=np.float64)
|
||
|
elif schedule_type == 'warm0.2':
|
||
|
|
||
|
betas = b_end * np.ones(time_num, dtype=np.float64)
|
||
|
warmup_time = int(time_num * 0.2)
|
||
|
betas[:warmup_time] = np.linspace(b_start, b_end, warmup_time, dtype=np.float64)
|
||
|
elif schedule_type == 'warm0.5':
|
||
|
|
||
|
betas = b_end * np.ones(time_num, dtype=np.float64)
|
||
|
warmup_time = int(time_num * 0.5)
|
||
|
betas[:warmup_time] = np.linspace(b_start, b_end, warmup_time, dtype=np.float64)
|
||
|
else:
|
||
|
raise NotImplementedError(schedule_type)
|
||
|
return betas
|
||
|
|
||
|
|
||
|
|
||
|
#############################################################################
|
||
|
def get_dataset(data_root, npoints, category):
|
||
|
|
||
|
train_ds = GANdatasetPartNet('test', data_root, category, npoints)
|
||
|
return train_ds
|
||
|
|
||
|
|
||
|
def generate_multimodal(opt, netE, save_dir, logger):
|
||
|
test_dataset = get_dataset(opt.data_root, opt.npoints,opt.classes)
|
||
|
# _, test_dataset = get_dataset(opt.dataroot, opt.npoints, opt.classes, use_mask=True)
|
||
|
test_dataloader = torch.utils.data.DataLoader(test_dataset, batch_size=opt.batch_size,
|
||
|
shuffle=False, num_workers=int(opt.workers), drop_last=False)
|
||
|
|
||
|
for i, data in tqdm(enumerate(test_dataloader), total=len(test_dataloader), desc='Reconstructing Samples'):
|
||
|
|
||
|
gt_all = data['real']
|
||
|
x_all = data['raw']
|
||
|
|
||
|
for j in range(5):
|
||
|
x = torch.cat([x_all, gt_all[:, :, opt.svpoints:]], dim=-1)
|
||
|
|
||
|
recon = netE.gen_samples(x[:, :, :opt.svpoints].cuda(), x[:, :, opt.svpoints:].shape, 'cuda',
|
||
|
clip_denoised=False).detach().cpu()
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
for p, d in enumerate(zip(list(x_all), list(recon), list(data['raw_id']))):
|
||
|
|
||
|
partial = torch.cat([d[0], d[0][:, 0:1].expand(-1, opt.svpoints)], dim=-1)
|
||
|
rec = d[1]
|
||
|
rid = d[2]
|
||
|
write_to_xml_batch(os.path.join(save_dir, 'x_%03d_%03d' % (i, p), 'mode_%03d' % j),
|
||
|
(torch.stack([partial, rec], dim=0)).transpose(1, 2).numpy(), cat='chair')
|
||
|
|
||
|
export_to_pc_batch(os.path.join(save_dir, 'x_ply_%03d_%03d' % (i, p), 'mode_%03d' % j),
|
||
|
(torch.stack([partial, rec], dim=0)).transpose(1, 2).numpy())
|
||
|
|
||
|
raw_id = rid.split('.')[0]
|
||
|
save_sample_dir = os.path.join(save_dir, "{}".format(raw_id))
|
||
|
Path(save_sample_dir).mkdir(parents=True, exist_ok=True)
|
||
|
# save input partial shape
|
||
|
if j == 0:
|
||
|
save_path = os.path.join(save_sample_dir, "raw.ply")
|
||
|
write_ply((partial.detach().cpu()).transpose(0, 1).numpy(), save_path)
|
||
|
# save completed shape
|
||
|
save_path = os.path.join(save_sample_dir, "fake-z{}.ply".format(j))
|
||
|
write_ply((rec.detach().cpu()).transpose(0, 1).numpy(), save_path)
|
||
|
|
||
|
|
||
|
def main(opt):
|
||
|
exp_id = os.path.splitext(os.path.basename(__file__))[0]
|
||
|
dir_id = os.path.dirname(__file__)
|
||
|
output_dir = get_output_dir(dir_id, exp_id)
|
||
|
copy_source(__file__, output_dir)
|
||
|
logger = setup_logging(output_dir)
|
||
|
|
||
|
outf_syn, = setup_output_subdirs(output_dir, 'syn')
|
||
|
|
||
|
betas = get_betas(opt.schedule_type, opt.beta_start, opt.beta_end, opt.time_num)
|
||
|
netE = Model(opt, betas, opt.loss_type, opt.model_mean_type, opt.model_var_type)
|
||
|
|
||
|
if opt.cuda:
|
||
|
netE.cuda()
|
||
|
|
||
|
def _transform_(m):
|
||
|
return nn.parallel.DataParallel(m)
|
||
|
|
||
|
netE = netE.cuda()
|
||
|
netE.multi_gpu_wrapper(_transform_)
|
||
|
|
||
|
netE.eval()
|
||
|
|
||
|
ckpts = [os.path.join(opt.ckpt_dir, f) for f in os.listdir(opt.ckpt_dir) if f.endswith('.pth')]
|
||
|
|
||
|
with torch.no_grad():
|
||
|
for ckpt in reversed(sorted(ckpts, key=lambda x: int(x.strip('.pth').split('_')[-1]) )):
|
||
|
|
||
|
opt.netE = ckpt
|
||
|
logger.info("Resume Path:%s" % opt.netE)
|
||
|
|
||
|
resumed_param = torch.load(opt.netE)
|
||
|
netE.load_state_dict(resumed_param['model_state'])
|
||
|
|
||
|
|
||
|
|
||
|
if opt.generate_multimodal:
|
||
|
|
||
|
generate_multimodal(opt, netE, outf_syn, logger)
|
||
|
|
||
|
|
||
|
def parse_args():
|
||
|
|
||
|
parser = argparse.ArgumentParser()
|
||
|
parser.add_argument('--data_root', default='/viscam/u/alexzhou907/01DATA/partnet',
|
||
|
help='input batch size')
|
||
|
|
||
|
parser.add_argument('--classes', default='Chair')
|
||
|
|
||
|
parser.add_argument('--batch_size', type=int, default=64, help='input batch size')
|
||
|
parser.add_argument('--workers', type=int, default=16, help='workers')
|
||
|
parser.add_argument('--niter', type=int, default=10000, help='number of epochs to train for')
|
||
|
|
||
|
parser.add_argument('--eval_recon_mvr', default=False)
|
||
|
parser.add_argument('--generate_multimodal', default=True)
|
||
|
parser.add_argument('--eval_saved', default=False)
|
||
|
|
||
|
parser.add_argument('--nc', default=3)
|
||
|
parser.add_argument('--npoints', default=2048)
|
||
|
parser.add_argument('--svpoints', default=1024)
|
||
|
'''model'''
|
||
|
parser.add_argument('--beta_start', default=0.0001)
|
||
|
parser.add_argument('--beta_end', default=0.02)
|
||
|
parser.add_argument('--schedule_type', default='linear')
|
||
|
parser.add_argument('--time_num', default=1000)
|
||
|
|
||
|
#params
|
||
|
parser.add_argument('--attention', default=True)
|
||
|
parser.add_argument('--dropout', default=0.1)
|
||
|
parser.add_argument('--embed_dim', type=int, default=64)
|
||
|
parser.add_argument('--loss_type', default='mse')
|
||
|
parser.add_argument('--model_mean_type', default='eps')
|
||
|
parser.add_argument('--model_var_type', default='fixedsmall')
|
||
|
|
||
|
|
||
|
# constrain function
|
||
|
parser.add_argument('--constrain_eps', default=0.2)
|
||
|
parser.add_argument('--constrain_steps', type=int, default=1)
|
||
|
|
||
|
parser.add_argument('--ckpt_dir', default='/viscam/u/alexzhou907/research/diffusion/shape_completion/output/epn3d_chair', help="path to netE (to continue training)")
|
||
|
|
||
|
'''eval'''
|
||
|
|
||
|
parser.add_argument('--eval_path',
|
||
|
default='/viscam/u/alexzhou907/research/diffusion/shapenet/output/test/2020-10-10-20-11-46/syn/epoch_2799_samples.pth')
|
||
|
|
||
|
parser.add_argument('--manualSeed', default=42, type=int, help='random seed')
|
||
|
|
||
|
parser.add_argument('--gpu', type=int, default=0, metavar='S', help='gpu id (default: 0)')
|
||
|
|
||
|
opt = parser.parse_args()
|
||
|
|
||
|
if torch.cuda.is_available():
|
||
|
opt.cuda = True
|
||
|
else:
|
||
|
opt.cuda = False
|
||
|
|
||
|
return opt
|
||
|
if __name__ == '__main__':
|
||
|
opt = parse_args()
|
||
|
|
||
|
main(opt)
|