PVD/metrics/ChamferDistancePytorch/chamfer5D/dist_chamfer_5D.py

76 lines
2.3 KiB
Python
Raw Normal View History

2021-10-19 20:54:46 +00:00
from torch import nn
from torch.autograd import Function
import torch
import importlib
import os
chamfer_found = importlib.find_loader("chamfer_5D") is not None
if not chamfer_found:
## Cool trick from https://github.com/chrdiller
print("Jitting Chamfer 5D")
from torch.utils.cpp_extension import load
chamfer_5D = load(name="chamfer_5D",
sources=[
"/".join(os.path.abspath(__file__).split('/')[:-1] + ["chamfer_cuda.cpp"]),
"/".join(os.path.abspath(__file__).split('/')[:-1] + ["chamfer5D.cu"]),
])
print("Loaded JIT 5D CUDA chamfer distance")
else:
import chamfer_5D
print("Loaded compiled 5D CUDA chamfer distance")
# Chamfer's distance module @thibaultgroueix
# GPU tensors only
class chamfer_5DFunction(Function):
@staticmethod
def forward(ctx, xyz1, xyz2):
batchsize, n, _ = xyz1.size()
_, m, _ = xyz2.size()
device = xyz1.device
dist1 = torch.zeros(batchsize, n)
dist2 = torch.zeros(batchsize, m)
idx1 = torch.zeros(batchsize, n).type(torch.IntTensor)
idx2 = torch.zeros(batchsize, m).type(torch.IntTensor)
dist1 = dist1.to(device)
dist2 = dist2.to(device)
idx1 = idx1.to(device)
idx2 = idx2.to(device)
torch.cuda.set_device(device)
chamfer_5D.forward(xyz1, xyz2, dist1, dist2, idx1, idx2)
ctx.save_for_backward(xyz1, xyz2, idx1, idx2)
return dist1, dist2, idx1, idx2
@staticmethod
def backward(ctx, graddist1, graddist2, gradidx1, gradidx2):
xyz1, xyz2, idx1, idx2 = ctx.saved_tensors
graddist1 = graddist1.contiguous()
graddist2 = graddist2.contiguous()
device = graddist1.device
gradxyz1 = torch.zeros(xyz1.size())
gradxyz2 = torch.zeros(xyz2.size())
gradxyz1 = gradxyz1.to(device)
gradxyz2 = gradxyz2.to(device)
chamfer_5D.backward(
xyz1, xyz2, gradxyz1, gradxyz2, graddist1, graddist2, idx1, idx2
)
return gradxyz1, gradxyz2
class chamfer_5DDist(nn.Module):
def __init__(self):
super(chamfer_5DDist, self).__init__()
def forward(self, input1, input2):
input1 = input1.contiguous()
input2 = input2.contiguous()
return chamfer_5DFunction.apply(input1, input2)