76 lines
2.3 KiB
Python
76 lines
2.3 KiB
Python
|
from torch import nn
|
||
|
from torch.autograd import Function
|
||
|
import torch
|
||
|
import importlib
|
||
|
import os
|
||
|
|
||
|
chamfer_found = importlib.find_loader("chamfer_5D") is not None
|
||
|
if not chamfer_found:
|
||
|
## Cool trick from https://github.com/chrdiller
|
||
|
print("Jitting Chamfer 5D")
|
||
|
|
||
|
from torch.utils.cpp_extension import load
|
||
|
chamfer_5D = load(name="chamfer_5D",
|
||
|
sources=[
|
||
|
"/".join(os.path.abspath(__file__).split('/')[:-1] + ["chamfer_cuda.cpp"]),
|
||
|
"/".join(os.path.abspath(__file__).split('/')[:-1] + ["chamfer5D.cu"]),
|
||
|
])
|
||
|
print("Loaded JIT 5D CUDA chamfer distance")
|
||
|
|
||
|
else:
|
||
|
import chamfer_5D
|
||
|
print("Loaded compiled 5D CUDA chamfer distance")
|
||
|
|
||
|
|
||
|
# Chamfer's distance module @thibaultgroueix
|
||
|
# GPU tensors only
|
||
|
class chamfer_5DFunction(Function):
|
||
|
@staticmethod
|
||
|
def forward(ctx, xyz1, xyz2):
|
||
|
batchsize, n, _ = xyz1.size()
|
||
|
_, m, _ = xyz2.size()
|
||
|
device = xyz1.device
|
||
|
|
||
|
dist1 = torch.zeros(batchsize, n)
|
||
|
dist2 = torch.zeros(batchsize, m)
|
||
|
|
||
|
idx1 = torch.zeros(batchsize, n).type(torch.IntTensor)
|
||
|
idx2 = torch.zeros(batchsize, m).type(torch.IntTensor)
|
||
|
|
||
|
dist1 = dist1.to(device)
|
||
|
dist2 = dist2.to(device)
|
||
|
idx1 = idx1.to(device)
|
||
|
idx2 = idx2.to(device)
|
||
|
torch.cuda.set_device(device)
|
||
|
|
||
|
chamfer_5D.forward(xyz1, xyz2, dist1, dist2, idx1, idx2)
|
||
|
ctx.save_for_backward(xyz1, xyz2, idx1, idx2)
|
||
|
return dist1, dist2, idx1, idx2
|
||
|
|
||
|
@staticmethod
|
||
|
def backward(ctx, graddist1, graddist2, gradidx1, gradidx2):
|
||
|
xyz1, xyz2, idx1, idx2 = ctx.saved_tensors
|
||
|
graddist1 = graddist1.contiguous()
|
||
|
graddist2 = graddist2.contiguous()
|
||
|
device = graddist1.device
|
||
|
|
||
|
gradxyz1 = torch.zeros(xyz1.size())
|
||
|
gradxyz2 = torch.zeros(xyz2.size())
|
||
|
|
||
|
gradxyz1 = gradxyz1.to(device)
|
||
|
gradxyz2 = gradxyz2.to(device)
|
||
|
chamfer_5D.backward(
|
||
|
xyz1, xyz2, gradxyz1, gradxyz2, graddist1, graddist2, idx1, idx2
|
||
|
)
|
||
|
return gradxyz1, gradxyz2
|
||
|
|
||
|
|
||
|
class chamfer_5DDist(nn.Module):
|
||
|
def __init__(self):
|
||
|
super(chamfer_5DDist, self).__init__()
|
||
|
|
||
|
def forward(self, input1, input2):
|
||
|
input1 = input1.contiguous()
|
||
|
input2 = input2.contiguous()
|
||
|
return chamfer_5DFunction.apply(input1, input2)
|