254 lines
11 KiB
Python
254 lines
11 KiB
Python
|
import functools
|
||
|
|
||
|
import torch.nn as nn
|
||
|
import torch
|
||
|
import numpy as np
|
||
|
from modules import SharedMLP, PVConv, PointNetSAModule, PointNetAModule, PointNetFPModule, Attention, Swish
|
||
|
|
||
|
|
||
|
def _linear_gn_relu(in_channels, out_channels):
|
||
|
return nn.Sequential(nn.Linear(in_channels, out_channels), nn.GroupNorm(8,out_channels), Swish())
|
||
|
|
||
|
|
||
|
def create_mlp_components(in_channels, out_channels, classifier=False, dim=2, width_multiplier=1):
|
||
|
r = width_multiplier
|
||
|
|
||
|
if dim == 1:
|
||
|
block = _linear_gn_relu
|
||
|
else:
|
||
|
block = SharedMLP
|
||
|
if not isinstance(out_channels, (list, tuple)):
|
||
|
out_channels = [out_channels]
|
||
|
if len(out_channels) == 0 or (len(out_channels) == 1 and out_channels[0] is None):
|
||
|
return nn.Sequential(), in_channels, in_channels
|
||
|
|
||
|
layers = []
|
||
|
for oc in out_channels[:-1]:
|
||
|
if oc < 1:
|
||
|
layers.append(nn.Dropout(oc))
|
||
|
else:
|
||
|
oc = int(r * oc)
|
||
|
layers.append(block(in_channels, oc))
|
||
|
in_channels = oc
|
||
|
if dim == 1:
|
||
|
if classifier:
|
||
|
layers.append(nn.Linear(in_channels, out_channels[-1]))
|
||
|
else:
|
||
|
layers.append(_linear_gn_relu(in_channels, int(r * out_channels[-1])))
|
||
|
else:
|
||
|
if classifier:
|
||
|
layers.append(nn.Conv1d(in_channels, out_channels[-1], 1))
|
||
|
else:
|
||
|
layers.append(SharedMLP(in_channels, int(r * out_channels[-1])))
|
||
|
return layers, out_channels[-1] if classifier else int(r * out_channels[-1])
|
||
|
|
||
|
|
||
|
def create_pointnet_components(blocks, in_channels, embed_dim, with_se=False, normalize=True, eps=0,
|
||
|
width_multiplier=1, voxel_resolution_multiplier=1):
|
||
|
r, vr = width_multiplier, voxel_resolution_multiplier
|
||
|
|
||
|
layers, concat_channels = [], 0
|
||
|
c = 0
|
||
|
for k, (out_channels, num_blocks, voxel_resolution) in enumerate(blocks):
|
||
|
out_channels = int(r * out_channels)
|
||
|
for p in range(num_blocks):
|
||
|
attention = k % 2 == 0 and k > 0 and p == 0
|
||
|
if voxel_resolution is None:
|
||
|
block = SharedMLP
|
||
|
else:
|
||
|
block = functools.partial(PVConv, kernel_size=3, resolution=int(vr * voxel_resolution), attention=attention,
|
||
|
with_se=with_se, normalize=normalize, eps=eps)
|
||
|
|
||
|
if c == 0:
|
||
|
layers.append(block(in_channels, out_channels))
|
||
|
else:
|
||
|
layers.append(block(in_channels+embed_dim, out_channels))
|
||
|
in_channels = out_channels
|
||
|
concat_channels += out_channels
|
||
|
c += 1
|
||
|
return layers, in_channels, concat_channels
|
||
|
|
||
|
|
||
|
def create_pointnet2_sa_components(sa_blocks, extra_feature_channels, embed_dim=64, use_att=False,
|
||
|
dropout=0.1, with_se=False, normalize=True, eps=0,
|
||
|
width_multiplier=1, voxel_resolution_multiplier=1):
|
||
|
r, vr = width_multiplier, voxel_resolution_multiplier
|
||
|
in_channels = extra_feature_channels + 3
|
||
|
|
||
|
sa_layers, sa_in_channels = [], []
|
||
|
c = 0
|
||
|
for conv_configs, sa_configs in sa_blocks:
|
||
|
k = 0
|
||
|
sa_in_channels.append(in_channels)
|
||
|
sa_blocks = []
|
||
|
|
||
|
if conv_configs is not None:
|
||
|
out_channels, num_blocks, voxel_resolution = conv_configs
|
||
|
out_channels = int(r * out_channels)
|
||
|
for p in range(num_blocks):
|
||
|
attention = (c+1) % 2 == 0 and c > 0 and use_att and p == 0
|
||
|
if voxel_resolution is None:
|
||
|
block = SharedMLP
|
||
|
else:
|
||
|
block = functools.partial(PVConv, kernel_size=3, resolution=int(vr * voxel_resolution), attention=attention,
|
||
|
dropout=dropout,
|
||
|
with_se=with_se and not attention, with_se_relu=True,
|
||
|
normalize=normalize, eps=eps)
|
||
|
|
||
|
if c == 0:
|
||
|
sa_blocks.append(block(in_channels, out_channels))
|
||
|
elif k ==0:
|
||
|
sa_blocks.append(block(in_channels+embed_dim, out_channels))
|
||
|
in_channels = out_channels
|
||
|
k += 1
|
||
|
extra_feature_channels = in_channels
|
||
|
num_centers, radius, num_neighbors, out_channels = sa_configs
|
||
|
_out_channels = []
|
||
|
for oc in out_channels:
|
||
|
if isinstance(oc, (list, tuple)):
|
||
|
_out_channels.append([int(r * _oc) for _oc in oc])
|
||
|
else:
|
||
|
_out_channels.append(int(r * oc))
|
||
|
out_channels = _out_channels
|
||
|
if num_centers is None:
|
||
|
block = PointNetAModule
|
||
|
else:
|
||
|
block = functools.partial(PointNetSAModule, num_centers=num_centers, radius=radius,
|
||
|
num_neighbors=num_neighbors)
|
||
|
sa_blocks.append(block(in_channels=extra_feature_channels+(embed_dim if k==0 else 0 ), out_channels=out_channels,
|
||
|
include_coordinates=True))
|
||
|
c += 1
|
||
|
in_channels = extra_feature_channels = sa_blocks[-1].out_channels
|
||
|
if len(sa_blocks) == 1:
|
||
|
sa_layers.append(sa_blocks[0])
|
||
|
else:
|
||
|
sa_layers.append(nn.Sequential(*sa_blocks))
|
||
|
|
||
|
return sa_layers, sa_in_channels, in_channels, 1 if num_centers is None else num_centers
|
||
|
|
||
|
|
||
|
def create_pointnet2_fp_modules(fp_blocks, in_channels, sa_in_channels, sv_points, embed_dim=64, use_att=False,
|
||
|
dropout=0.1,
|
||
|
with_se=False, normalize=True, eps=0,
|
||
|
width_multiplier=1, voxel_resolution_multiplier=1):
|
||
|
r, vr = width_multiplier, voxel_resolution_multiplier
|
||
|
|
||
|
fp_layers = []
|
||
|
c = 0
|
||
|
for fp_idx, (fp_configs, conv_configs) in enumerate(fp_blocks):
|
||
|
fp_blocks = []
|
||
|
out_channels = tuple(int(r * oc) for oc in fp_configs)
|
||
|
fp_blocks.append(
|
||
|
PointNetFPModule(in_channels=in_channels + sa_in_channels[-1 - fp_idx] + embed_dim, out_channels=out_channels)
|
||
|
)
|
||
|
in_channels = out_channels[-1]
|
||
|
|
||
|
if conv_configs is not None:
|
||
|
out_channels, num_blocks, voxel_resolution = conv_configs
|
||
|
out_channels = int(r * out_channels)
|
||
|
for p in range(num_blocks):
|
||
|
attention = c % 2 == 0 and c < len(fp_blocks) - 1 and use_att and p == 0
|
||
|
if voxel_resolution is None:
|
||
|
block = SharedMLP
|
||
|
else:
|
||
|
block = functools.partial(PVConv, kernel_size=3, resolution=int(vr * voxel_resolution), attention=attention,
|
||
|
dropout=dropout,
|
||
|
with_se=with_se and not attention,with_se_relu=True, normalize=normalize, eps=eps)
|
||
|
|
||
|
fp_blocks.append(block(in_channels, out_channels))
|
||
|
in_channels = out_channels
|
||
|
if len(fp_blocks) == 1:
|
||
|
fp_layers.append(fp_blocks[0])
|
||
|
else:
|
||
|
fp_layers.append(nn.Sequential(*fp_blocks))
|
||
|
|
||
|
c += 1
|
||
|
|
||
|
return fp_layers, in_channels
|
||
|
|
||
|
|
||
|
class PVCNN2Base(nn.Module):
|
||
|
|
||
|
def __init__(self, num_classes, sv_points, embed_dim, use_att, dropout=0.1,
|
||
|
extra_feature_channels=3, width_multiplier=1, voxel_resolution_multiplier=1):
|
||
|
super().__init__()
|
||
|
assert extra_feature_channels >= 0
|
||
|
self.embed_dim = embed_dim
|
||
|
self.sv_points = sv_points
|
||
|
self.in_channels = extra_feature_channels + 3
|
||
|
|
||
|
sa_layers, sa_in_channels, channels_sa_features, _ = create_pointnet2_sa_components(
|
||
|
sa_blocks=self.sa_blocks, extra_feature_channels=extra_feature_channels, with_se=True, embed_dim=embed_dim,
|
||
|
use_att=use_att, dropout=dropout,
|
||
|
width_multiplier=width_multiplier, voxel_resolution_multiplier=voxel_resolution_multiplier
|
||
|
)
|
||
|
self.sa_layers = nn.ModuleList(sa_layers)
|
||
|
|
||
|
self.global_att = None if not use_att else Attention(channels_sa_features, 8, D=1)
|
||
|
|
||
|
# only use extra features in the last fp module
|
||
|
sa_in_channels[0] = extra_feature_channels
|
||
|
fp_layers, channels_fp_features = create_pointnet2_fp_modules(
|
||
|
fp_blocks=self.fp_blocks, in_channels=channels_sa_features, sa_in_channels=sa_in_channels,sv_points=sv_points,
|
||
|
with_se=True, embed_dim=embed_dim,
|
||
|
use_att=use_att, dropout=dropout,
|
||
|
width_multiplier=width_multiplier, voxel_resolution_multiplier=voxel_resolution_multiplier
|
||
|
)
|
||
|
self.fp_layers = nn.ModuleList(fp_layers)
|
||
|
|
||
|
|
||
|
layers, _ = create_mlp_components(in_channels=channels_fp_features, out_channels=[128, 0.5, num_classes],
|
||
|
classifier=True, dim=2, width_multiplier=width_multiplier)
|
||
|
self.classifier = nn.Sequential(*layers)
|
||
|
|
||
|
self.embedf = nn.Sequential(
|
||
|
nn.Linear(embed_dim, embed_dim),
|
||
|
nn.LeakyReLU(0.1, inplace=True),
|
||
|
nn.Linear(embed_dim, embed_dim),
|
||
|
)
|
||
|
|
||
|
def get_timestep_embedding(self, timesteps, device):
|
||
|
assert len(timesteps.shape) == 1 # and timesteps.dtype == tf.int32
|
||
|
|
||
|
half_dim = self.embed_dim // 2
|
||
|
emb = np.log(10000) / (half_dim - 1)
|
||
|
emb = torch.from_numpy(np.exp(np.arange(0, half_dim) * -emb)).float().to(device)
|
||
|
# emb = tf.range(num_embeddings, dtype=DEFAULT_DTYPE)[:, None] * emb[None, :]
|
||
|
emb = timesteps[:, None] * emb[None, :]
|
||
|
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
|
||
|
if self.embed_dim % 2 == 1: # zero pad
|
||
|
# emb = tf.concat([emb, tf.zeros([num_embeddings, 1])], axis=1)
|
||
|
emb = nn.functional.pad(emb, (0, 1), "constant", 0)
|
||
|
assert emb.shape == torch.Size([timesteps.shape[0], self.embed_dim])
|
||
|
return emb
|
||
|
|
||
|
def forward(self, inputs, t):
|
||
|
|
||
|
temb = self.embedf(self.get_timestep_embedding(t, inputs.device))[:,:,None].expand(-1,-1,inputs.shape[-1])
|
||
|
|
||
|
# inputs : [B, in_channels + S, N]
|
||
|
coords, features = inputs[:, :3, :].contiguous(), inputs
|
||
|
coords_list, in_features_list = [], []
|
||
|
for i, sa_blocks in enumerate(self.sa_layers):
|
||
|
in_features_list.append(features)
|
||
|
coords_list.append(coords)
|
||
|
if i == 0:
|
||
|
features, coords, temb = sa_blocks ((features, coords, temb))
|
||
|
else:
|
||
|
features, coords, temb = sa_blocks ((torch.cat([features,temb],dim=1), coords, temb))
|
||
|
in_features_list[0] = inputs[:, 3:, :].contiguous()
|
||
|
if self.global_att is not None:
|
||
|
features = self.global_att(features)
|
||
|
for fp_idx, fp_blocks in enumerate(self.fp_layers):
|
||
|
jump_coords = coords_list[-1 - fp_idx]
|
||
|
fump_feats = in_features_list[-1-fp_idx]
|
||
|
# if fp_idx == len(self.fp_layers) - 1:
|
||
|
# jump_coords = jump_coords[:,:,self.sv_points:]
|
||
|
# fump_feats = fump_feats[:,:,self.sv_points:]
|
||
|
|
||
|
features, coords, temb = fp_blocks((jump_coords, coords, torch.cat([features,temb],dim=1), fump_feats, temb))
|
||
|
|
||
|
return self.classifier(features)
|
||
|
|
||
|
|