35 lines
1.4 KiB
Python
35 lines
1.4 KiB
Python
import torch
|
|
import torch.nn as nn
|
|
|
|
import modules.functional as F
|
|
|
|
__all__ = ['BallQuery']
|
|
|
|
|
|
class BallQuery(nn.Module):
|
|
def __init__(self, radius, num_neighbors, include_coordinates=True):
|
|
super().__init__()
|
|
self.radius = radius
|
|
self.num_neighbors = num_neighbors
|
|
self.include_coordinates = include_coordinates
|
|
|
|
def forward(self, points_coords, centers_coords, temb, points_features=None):
|
|
points_coords = points_coords.contiguous()
|
|
centers_coords = centers_coords.contiguous()
|
|
neighbor_indices = F.ball_query(centers_coords, points_coords, self.radius, self.num_neighbors)
|
|
neighbor_coordinates = F.grouping(points_coords, neighbor_indices)
|
|
neighbor_coordinates = neighbor_coordinates - centers_coords.unsqueeze(-1)
|
|
|
|
if points_features is None:
|
|
assert self.include_coordinates, 'No Features For Grouping'
|
|
neighbor_features = neighbor_coordinates
|
|
else:
|
|
neighbor_features = F.grouping(points_features, neighbor_indices)
|
|
if self.include_coordinates:
|
|
neighbor_features = torch.cat([neighbor_coordinates, neighbor_features], dim=1)
|
|
return neighbor_features, F.grouping(temb, neighbor_indices)
|
|
|
|
def extra_repr(self):
|
|
return 'radius={}, num_neighbors={}{}'.format(
|
|
self.radius, self.num_neighbors, ', include coordinates' if self.include_coordinates else '')
|