PVD/modules/functional/interpolatation.py
2023-04-11 11:12:58 +02:00

39 lines
1.4 KiB
Python

from torch.autograd import Function
from modules.functional.backend import _backend
__all__ = ["nearest_neighbor_interpolate"]
class NeighborInterpolation(Function):
@staticmethod
def forward(ctx, points_coords, centers_coords, centers_features):
"""
:param ctx:
:param points_coords: coordinates of points, FloatTensor[B, 3, N]
:param centers_coords: coordinates of centers, FloatTensor[B, 3, M]
:param centers_features: features of centers, FloatTensor[B, C, M]
:return:
points_features: features of points, FloatTensor[B, C, N]
"""
centers_coords = centers_coords.contiguous()
points_coords = points_coords.contiguous()
centers_features = centers_features.contiguous()
points_features, indices, weights = _backend.three_nearest_neighbors_interpolate_forward(
points_coords, centers_coords, centers_features
)
ctx.save_for_backward(indices, weights)
ctx.num_centers = centers_coords.size(-1)
return points_features
@staticmethod
def backward(ctx, grad_output):
indices, weights = ctx.saved_tensors
grad_centers_features = _backend.three_nearest_neighbors_interpolate_backward(
grad_output.contiguous(), indices, weights, ctx.num_centers
)
return None, None, grad_centers_features
nearest_neighbor_interpolate = NeighborInterpolation.apply