PVD/dataset/rotor37_data.py
2023-04-11 13:50:00 +02:00

195 lines
6.5 KiB
Python

from pathlib import Path
import h5py
import numpy as np
import pyvista as pv
import torch
from rich.progress import track
from torch.utils.data import Dataset
DATASET_DIR = Path("/gpfs_new/cold-data/InputData/public_datasets/rotor37/rotor37_1200/")
VTKFILE_NOMINAL = DATASET_DIR / "ncs" / "nominal_blade.vtk"
H5FILE_TRAIN = DATASET_DIR / "h5" / "blade_meshes_train.h5"
H5FILE_TEST = DATASET_DIR / "h5" / "blade_meshes_test.h5"
CARDINALITY_TRAIN = 1000
CARDINALITY_TEST = 200
def rotate_nominal_blade(blade: pv.PolyData) -> None:
"""Rotate nominal blade points.
The nominal blade must be rotated to match the orientation of the other blades.
Rotations applied (sequentially) are:
- -90° around z-axis
- -90° around y-axis
Args:
blade (pyvista.PolyData): blade to rotate
"""
THETA = -90
PHI = -90
RZ = np.array(
[
[np.cos(np.deg2rad(THETA)), -np.sin(np.deg2rad(THETA)), 0],
[np.sin(np.deg2rad(THETA)), np.cos(np.deg2rad(THETA)), 0],
[0, 0, 1],
]
)
RY = np.array(
[
[np.cos(np.deg2rad(PHI)), 0, np.sin(np.deg2rad(PHI))],
[0, 1, 0],
[-np.sin(np.deg2rad(PHI)), 0, np.cos(np.deg2rad(PHI))],
]
)
# rotation of θ° around z-axis
blade.points = np.asarray(blade.points) @ RZ
blade.point_data["Normals"] = np.asarray(blade.point_normals) @ RZ
# rotation of φ° around y-axis
blade.points = np.asarray(blade.points) @ RY
blade.point_data["Normals"] = np.asarray(blade.point_normals) @ RY
class Rotor37Dataset(Dataset):
"""Rotor37 dataset.
This dataset is a collection of 1200 graphs, each representing a blade of a wind turbine.
The dataset is split into 2 subsets: train and test, with 1000 and 200 graphs respectively.
Each graph is a 3D mesh, with 3D deformations from a nominal blade, 3D normals, 3D faces and physical properties.
"""
def __init__(
self,
root: str,
split: str = "train",
):
"""Initialize a new Rotor37 dataset instance.
Args:
root (str): root directory of the dataset
split (str): split of the dataset, either "train" or "test"
"""
# set split
assert split in ("train", "test")
self.split = split
# set cardinality and h5file according to split
self.cardinality = CARDINALITY_TRAIN if split == "train" else CARDINALITY_TEST
self.h5file = H5FILE_TRAIN if split == "train" else H5FILE_TEST
super().__init__(root, transform, pre_transform)
@property
def raw_file_names(self) -> list[str]:
"""No raw files."""
return []
@property
def processed_file_names(self) -> list[str]:
"""Processed files are named data_{split}_{idx:04d}.pt, where idx is the index of the graph."""
return [f"data_{self.split}_{idx:04d}.pt" for idx in range(self.cardinality)]
def download(self):
"""No need to download, data already in cluster."""
pass
def process(self) -> None:
"""Process the dataset.
The dataset is processed by loading the nominal blade, and then loading all deformed blades.
For each deformed blade, the following attributes are computed and stored in a `Data` object:
- delta: deformed blade - nominal blade
- fields: physical properties of the blade
- normals: normals of the blade
- edges: edges of the blade
- faces: faces of the blade
The `Data` object is then saved to disk.
"""
# load nominal blade
vtk_reader = pv.get_reader(VTKFILE_NOMINAL)
nominal = vtk_reader.read()
rotate_nominal_blade(nominal)
nominal_positions = torch.as_tensor(nominal.points, dtype=torch.float32)
# load all deformed blades
with h5py.File(self.h5file, "r") as h5file:
# NB: torch.as_tensor(np.asarray(data)) is a bit ugly
# but torch torch.as_tensor(data) complains about data being an array of numpy arrays, and is also slower
# common edges and faces matrix for each graph
edges = torch.as_tensor(np.asarray(h5file["adj"]), dtype=torch.int64).transpose(0, 1)
faces = torch.as_tensor(np.asarray(h5file["faces"]), dtype=torch.int64).transpose(0, 1)
# attributes specific to each graph
attributes = zip(
h5file["points"], # type: ignore
h5file["normals"], # type: ignore
h5file["output_fields"], # type: ignore
)
# for each graph
for idx, (positions, normals, fields) in track(
enumerate(attributes),
total=self.cardinality,
):
# convert to torch tensors
positions = torch.as_tensor(np.asarray(positions), dtype=torch.float32)
fields = torch.as_tensor(np.asarray(fields), dtype=torch.float32)
normals = torch.as_tensor(np.asarray(normals), dtype=torch.float32)
delta = positions - nominal_positions
# save data to disk
def len(self) -> int:
"""Return the cardinality of the dataset."""
return self.cardinality
def get(self, idx) -> Data:
"""Load and return the graph `Data`.
Args:
idx (int): index of the graph to return
Returns:
Data: graph at index `idx`
"""
return torch.load(self.processed_dir / f"data_{self.split}_{idx:04d}.pt")
def __repr__(self) -> str:
"""Return a string representation of the dataset."""
return f"{self.__class__.__name__}({self.split}, {len(self)})"
@property
def processed_dir(self) -> Path:
"""Wrap processed_dir to return a Path instead of a str."""
return Path(super().processed_dir)
if __name__ == "__main__":
from torch_geometric.loader import DataLoader
# load test split
ds_test = Rotor37Dataset(root="./datasets/Rotor37/", split="test")
print(ds_test)
print(ds_test[0])
# create test data loader
ld_test = DataLoader(ds_test, batch_size=8, shuffle=True)
print(ld_test)
print(next(iter(ld_test)))
# load train split
ds_train = Rotor37Dataset(root="./datasets/Rotor37/", split="train")
print(ds_train)
print(ds_train[0])
# create train data loader
ld_train = DataLoader(ds_train, batch_size=8, shuffle=True)
print(ld_train)
print(next(iter(ld_train)))