43 lines
1.5 KiB
Python
43 lines
1.5 KiB
Python
|
import torch
|
||
|
from torch.autograd import Function
|
||
|
# from extensions.StructuralLosses.StructuralLossesBackend import NNDistance, NNDistanceGrad
|
||
|
from metrics.StructuralLosses.StructuralLossesBackend import NNDistance, NNDistanceGrad
|
||
|
|
||
|
# Inherit from Function
|
||
|
class NNDistanceFunction(Function):
|
||
|
# Note that both forward and backward are @staticmethods
|
||
|
@staticmethod
|
||
|
# bias is an optional argument
|
||
|
def forward(ctx, seta, setb):
|
||
|
#print("Match Cost Forward")
|
||
|
ctx.save_for_backward(seta, setb)
|
||
|
'''
|
||
|
input:
|
||
|
set1 : batch_size * #dataset_points * 3
|
||
|
set2 : batch_size * #query_points * 3
|
||
|
returns:
|
||
|
dist1, idx1, dist2, idx2
|
||
|
'''
|
||
|
dist1, idx1, dist2, idx2 = NNDistance(seta, setb)
|
||
|
ctx.idx1 = idx1
|
||
|
ctx.idx2 = idx2
|
||
|
return dist1, dist2
|
||
|
|
||
|
# This function has only a single output, so it gets only one gradient
|
||
|
@staticmethod
|
||
|
def backward(ctx, grad_dist1, grad_dist2):
|
||
|
#print("Match Cost Backward")
|
||
|
# This is a pattern that is very convenient - at the top of backward
|
||
|
# unpack saved_tensors and initialize all gradients w.r.t. inputs to
|
||
|
# None. Thanks to the fact that additional trailing Nones are
|
||
|
# ignored, the return statement is simple even when the function has
|
||
|
# optional inputs.
|
||
|
seta, setb = ctx.saved_tensors
|
||
|
idx1 = ctx.idx1
|
||
|
idx2 = ctx.idx2
|
||
|
grada, gradb = NNDistanceGrad(seta, setb, idx1, idx2, grad_dist1, grad_dist2)
|
||
|
return grada, gradb
|
||
|
|
||
|
nn_distance = NNDistanceFunction.apply
|
||
|
|