Update README.md
This commit is contained in:
parent
8bedce0be6
commit
470cfc4a77
13
README.md
13
README.md
|
@ -3,13 +3,16 @@
|
||||||
This repository contains a PyTorch implementation of the paper:
|
This repository contains a PyTorch implementation of the paper:
|
||||||
|
|
||||||
[PointFlow : 3D Point Cloud Generation with Continuous Normalizing Flows](https://arxiv.org/abs/1906.12320).
|
[PointFlow : 3D Point Cloud Generation with Continuous Normalizing Flows](https://arxiv.org/abs/1906.12320).
|
||||||
|
<br>
|
||||||
[Guandao Yang*](http://www.guandaoyang.com),
|
[Guandao Yang*](http://www.guandaoyang.com),
|
||||||
[Xun Huang*](http://www.cs.cornell.edu/~xhuang/),
|
[Xun Huang*](http://www.cs.cornell.edu/~xhuang/),
|
||||||
[Zekun Hao](http://www.cs.cornell.edu/~zekun/),
|
[Zekun Hao](http://www.cs.cornell.edu/~zekun/),
|
||||||
[Ming-Yu Liu](http://mingyuliu.net/),
|
[Ming-Yu Liu](http://mingyuliu.net/),
|
||||||
[Serge Belongie](http://blogs.cornell.edu/techfaculty/serge-belongie/),
|
[Serge Belongie](http://blogs.cornell.edu/techfaculty/serge-belongie/),
|
||||||
[Bharath Hariharan](http://home.bharathh.info/)
|
[Bharath Hariharan](http://home.bharathh.info/)
|
||||||
|
(* equal contribution)
|
||||||
|
<br>
|
||||||
|
ICCV 2019 (**Oral**)
|
||||||
|
|
||||||
|
|
||||||
## Introduction
|
## Introduction
|
||||||
|
@ -27,7 +30,7 @@ As 3D point clouds become the representation of choice for multiple vision and g
|
||||||
* G++ or GCC 5.
|
* G++ or GCC 5.
|
||||||
* [PyTorch](http://pytorch.org/). Codes are tested with version 1.0.1
|
* [PyTorch](http://pytorch.org/). Codes are tested with version 1.0.1
|
||||||
* [torchdiffeq](https://github.com/rtqichen/torchdiffeq).
|
* [torchdiffeq](https://github.com/rtqichen/torchdiffeq).
|
||||||
* (Optional) [Tensorboard](https://www.tensorflow.org/) for visualization of training process.
|
* (Optional) [Tensorboard](https://www.tensorflow.org/) for visualization of the training process.
|
||||||
|
|
||||||
Following is the suggested way to install these dependencies:
|
Following is the suggested way to install these dependencies:
|
||||||
```bash
|
```bash
|
||||||
|
@ -53,7 +56,7 @@ cd data
|
||||||
unzip ShapeNetCore.v2.PC15k.zip
|
unzip ShapeNetCore.v2.PC15k.zip
|
||||||
```
|
```
|
||||||
|
|
||||||
Please contact us if you need point clouds for ModelNet dataset.
|
Please contact us if you need point clouds for the ModelNet dataset.
|
||||||
|
|
||||||
## Training
|
## Training
|
||||||
|
|
||||||
|
@ -71,7 +74,7 @@ Example training scripts can be found in `scripts/` folder.
|
||||||
## Pre-trained models and test
|
## Pre-trained models and test
|
||||||
|
|
||||||
Pretrained models can be downloaded from this [link](https://drive.google.com/file/d/1dcxjuuKiAXZxhiyWD_o_7Owx8Y3FbRHG/view?usp=sharing).
|
Pretrained models can be downloaded from this [link](https://drive.google.com/file/d/1dcxjuuKiAXZxhiyWD_o_7Owx8Y3FbRHG/view?usp=sharing).
|
||||||
Following is the suggested way to evaluate the performance of the pre-trained models.
|
The following is the suggested way to evaluate the performance of the pre-trained models.
|
||||||
```bash
|
```bash
|
||||||
unzip pretrained_models.zip; # This will create a folder named pretrained_models
|
unzip pretrained_models.zip; # This will create a folder named pretrained_models
|
||||||
|
|
||||||
|
@ -87,7 +90,7 @@ CUDA_VISIBLE_DEVICES=0 ./scripts/shapenet_airplane_gen_test.sh
|
||||||
|
|
||||||
## Demo
|
## Demo
|
||||||
|
|
||||||
The demo relies on [Open3D](http://www.open3d.org/). Following is the suggested way to install it:
|
The demo relies on [Open3D](http://www.open3d.org/). The following is the suggested way to install it:
|
||||||
```bash
|
```bash
|
||||||
conda install -c open3d-admin open3d
|
conda install -c open3d-admin open3d
|
||||||
```
|
```
|
||||||
|
|
Loading…
Reference in a new issue