PointFlow/models/cnf.py
2019-07-13 21:32:26 -07:00

123 lines
3.9 KiB
Python

import torch
import torch.nn as nn
from torchdiffeq import odeint_adjoint
from torchdiffeq import odeint as odeint_normal
__all__ = ["CNF", "SequentialFlow"]
class SequentialFlow(nn.Module):
"""A generalized nn.Sequential container for normalizing flows."""
def __init__(self, layer_list):
super(SequentialFlow, self).__init__()
self.chain = nn.ModuleList(layer_list)
def forward(self, x, context, logpx=None, reverse=False, inds=None, integration_times=None):
if inds is None:
if reverse:
inds = range(len(self.chain) - 1, -1, -1)
else:
inds = range(len(self.chain))
if logpx is None:
for i in inds:
x = self.chain[i](x, context, logpx, integration_times, reverse)
return x
else:
for i in inds:
x, logpx = self.chain[i](x, context, logpx, integration_times, reverse)
return x, logpx
class CNF(nn.Module):
def __init__(self, odefunc, conditional=True, T=1.0, train_T=False, regularization_fns=None,
solver='dopri5', atol=1e-5, rtol=1e-5, use_adjoint=True):
super(CNF, self).__init__()
self.train_T = train_T
self.T = T
if train_T:
self.register_parameter("sqrt_end_time", nn.Parameter(torch.sqrt(torch.tensor(T))))
if regularization_fns is not None and len(regularization_fns) > 0:
raise NotImplementedError("Regularization not supported")
self.use_adjoint = use_adjoint
self.odefunc = odefunc
self.solver = solver
self.atol = atol
self.rtol = rtol
self.test_solver = solver
self.test_atol = atol
self.test_rtol = rtol
self.solver_options = {}
self.conditional = conditional
def forward(self, x, context=None, logpx=None, integration_times=None, reverse=False):
if logpx is None:
_logpx = torch.zeros(*x.shape[:-1], 1).to(x)
else:
_logpx = logpx
if self.conditional:
assert context is not None
states = (x, _logpx, context)
atol = [self.atol] * 3
rtol = [self.rtol] * 3
else:
states = (x, _logpx)
atol = [self.atol] * 2
rtol = [self.rtol] * 2
if integration_times is None:
if self.train_T:
integration_times = torch.stack(
[torch.tensor(0.0).to(x), self.sqrt_end_time * self.sqrt_end_time]
).to(x)
else:
integration_times = torch.tensor([0., self.T], requires_grad=False).to(x)
if reverse:
integration_times = _flip(integration_times, 0)
# Refresh the odefunc statistics.
self.odefunc.before_odeint()
odeint = odeint_adjoint if self.use_adjoint else odeint_normal
if self.training:
state_t = odeint(
self.odefunc,
states,
integration_times.to(x),
atol=atol,
rtol=rtol,
method=self.solver,
options=self.solver_options,
)
else:
state_t = odeint(
self.odefunc,
states,
integration_times.to(x),
atol=self.test_atol,
rtol=self.test_rtol,
method=self.test_solver,
)
if len(integration_times) == 2:
state_t = tuple(s[1] for s in state_t)
z_t, logpz_t = state_t[:2]
if logpx is not None:
return z_t, logpz_t
else:
return z_t
def num_evals(self):
return self.odefunc._num_evals.item()
def _flip(x, dim):
indices = [slice(None)] * x.dim()
indices[dim] = torch.arange(x.size(dim) - 1, -1, -1, dtype=torch.long, device=x.device)
return x[tuple(indices)]