PointFlow/datasets.py
2019-07-13 21:32:26 -07:00

390 lines
16 KiB
Python

import os
import torch
import numpy as np
from torch.utils.data import Dataset
from torch.utils import data
import random
# taken from https://github.com/optas/latent_3d_points/blob/8e8f29f8124ed5fc59439e8551ba7ef7567c9a37/src/in_out.py
synsetid_to_cate = {
'02691156': 'airplane', '02773838': 'bag', '02801938': 'basket',
'02808440': 'bathtub', '02818832': 'bed', '02828884': 'bench',
'02876657': 'bottle', '02880940': 'bowl', '02924116': 'bus',
'02933112': 'cabinet', '02747177': 'can', '02942699': 'camera',
'02954340': 'cap', '02958343': 'car', '03001627': 'chair',
'03046257': 'clock', '03207941': 'dishwasher', '03211117': 'monitor',
'04379243': 'table', '04401088': 'telephone', '02946921': 'tin_can',
'04460130': 'tower', '04468005': 'train', '03085013': 'keyboard',
'03261776': 'earphone', '03325088': 'faucet', '03337140': 'file',
'03467517': 'guitar', '03513137': 'helmet', '03593526': 'jar',
'03624134': 'knife', '03636649': 'lamp', '03642806': 'laptop',
'03691459': 'speaker', '03710193': 'mailbox', '03759954': 'microphone',
'03761084': 'microwave', '03790512': 'motorcycle', '03797390': 'mug',
'03928116': 'piano', '03938244': 'pillow', '03948459': 'pistol',
'03991062': 'pot', '04004475': 'printer', '04074963': 'remote_control',
'04090263': 'rifle', '04099429': 'rocket', '04225987': 'skateboard',
'04256520': 'sofa', '04330267': 'stove', '04530566': 'vessel',
'04554684': 'washer', '02992529': 'cellphone',
'02843684': 'birdhouse', '02871439': 'bookshelf',
# '02858304': 'boat', no boat in our dataset, merged into vessels
# '02834778': 'bicycle', not in our taxonomy
}
cate_to_synsetid = {v: k for k, v in synsetid_to_cate.items()}
class Uniform15KPC(Dataset):
def __init__(self, root_dir, subdirs, tr_sample_size=10000,
te_sample_size=10000, split='train', scale=1.,
normalize_per_shape=False, random_subsample=False,
normalize_std_per_axis=False,
all_points_mean=None, all_points_std=None,
input_dim=3):
self.root_dir = root_dir
self.split = split
self.in_tr_sample_size = tr_sample_size
self.in_te_sample_size = te_sample_size
self.subdirs = subdirs
self.scale = scale
self.random_subsample = random_subsample
self.input_dim = input_dim
self.all_cate_mids = []
self.cate_idx_lst = []
self.all_points = []
for cate_idx, subd in enumerate(self.subdirs):
# NOTE: [subd] here is synset id
sub_path = os.path.join(root_dir, subd, self.split)
if not os.path.isdir(sub_path):
print("Directory missing : %s" % sub_path)
continue
all_mids = []
for x in os.listdir(sub_path):
if not x.endswith('.npy'):
continue
all_mids.append(os.path.join(self.split, x[:-len('.npy')]))
# NOTE: [mid] contains the split: i.e. "train/<mid>" or "val/<mid>" or "test/<mid>"
for mid in all_mids:
# obj_fname = os.path.join(sub_path, x)
obj_fname = os.path.join(root_dir, subd, mid + ".npy")
try:
point_cloud = np.load(obj_fname) # (15k, 3)
except:
continue
assert point_cloud.shape[0] == 15000
self.all_points.append(point_cloud[np.newaxis, ...])
self.cate_idx_lst.append(cate_idx)
self.all_cate_mids.append((subd, mid))
# Shuffle the index deterministically (based on the number of examples)
self.shuffle_idx = list(range(len(self.all_points)))
random.Random(38383).shuffle(self.shuffle_idx)
self.cate_idx_lst = [self.cate_idx_lst[i] for i in self.shuffle_idx]
self.all_points = [self.all_points[i] for i in self.shuffle_idx]
self.all_cate_mids = [self.all_cate_mids[i] for i in self.shuffle_idx]
# Normalization
self.all_points = np.concatenate(self.all_points) # (N, 15000, 3)
self.normalize_per_shape = normalize_per_shape
self.normalize_std_per_axis = normalize_std_per_axis
if all_points_mean is not None and all_points_std is not None: # using loaded dataset stats
self.all_points_mean = all_points_mean
self.all_points_std = all_points_std
elif self.normalize_per_shape: # per shape normalization
B, N = self.all_points.shape[:2]
self.all_points_mean = self.all_points.mean(axis=1).reshape(B, 1, input_dim)
if normalize_std_per_axis:
self.all_points_std = self.all_points.reshape(B, N, -1).std(axis=1).reshape(B, 1, input_dim)
else:
self.all_points_std = self.all_points.reshape(B, -1).std(axis=1).reshape(B, 1, 1)
else: # normalize across the dataset
self.all_points_mean = self.all_points.reshape(-1, input_dim).mean(axis=0).reshape(1, 1, input_dim)
if normalize_std_per_axis:
self.all_points_std = self.all_points.reshape(-1, input_dim).std(axis=0).reshape(1, 1, input_dim)
else:
self.all_points_std = self.all_points.reshape(-1).std(axis=0).reshape(1, 1, 1)
self.all_points = (self.all_points - self.all_points_mean) / self.all_points_std
self.train_points = self.all_points[:, :10000]
self.test_points = self.all_points[:, 10000:]
self.tr_sample_size = min(10000, tr_sample_size)
self.te_sample_size = min(5000, te_sample_size)
print("Total number of data:%d" % len(self.train_points))
print("Min number of points: (train)%d (test)%d"
% (self.tr_sample_size, self.te_sample_size))
assert self.scale == 1, "Scale (!= 1) is deprecated"
def get_pc_stats(self, idx):
if self.normalize_per_shape:
m = self.all_points_mean[idx].reshape(1, self.input_dim)
s = self.all_points_std[idx].reshape(1, -1)
return m, s
return self.all_points_mean.reshape(1, -1), self.all_points_std.reshape(1, -1)
def renormalize(self, mean, std):
self.all_points = self.all_points * self.all_points_std + self.all_points_mean
self.all_points_mean = mean
self.all_points_std = std
self.all_points = (self.all_points - self.all_points_mean) / self.all_points_std
self.train_points = self.all_points[:, :10000]
self.test_points = self.all_points[:, 10000:]
def __len__(self):
return len(self.train_points)
def __getitem__(self, idx):
tr_out = self.train_points[idx]
if self.random_subsample:
tr_idxs = np.random.choice(tr_out.shape[0], self.tr_sample_size)
else:
tr_idxs = np.arange(self.tr_sample_size)
tr_out = torch.from_numpy(tr_out[tr_idxs, :]).float()
te_out = self.test_points[idx]
if self.random_subsample:
te_idxs = np.random.choice(te_out.shape[0], self.te_sample_size)
else:
te_idxs = np.arange(self.te_sample_size)
te_out = torch.from_numpy(te_out[te_idxs, :]).float()
m, s = self.get_pc_stats(idx)
cate_idx = self.cate_idx_lst[idx]
sid, mid = self.all_cate_mids[idx]
return {
'idx': idx,
'train_points': tr_out,
'test_points': te_out,
'mean': m, 'std': s, 'cate_idx': cate_idx,
'sid': sid, 'mid': mid
}
class ModelNet40PointClouds(Uniform15KPC):
def __init__(self, root_dir="data/ModelNet40.PC15k",
tr_sample_size=10000, te_sample_size=2048,
split='train', scale=1., normalize_per_shape=False,
normalize_std_per_axis=False,
random_subsample=False,
all_points_mean=None, all_points_std=None):
self.root_dir = root_dir
self.split = split
assert self.split in ['train', 'test']
self.sample_size = tr_sample_size
self.cates = []
for cate in os.listdir(root_dir):
if os.path.isdir(os.path.join(root_dir, cate)) \
and os.path.isdir(os.path.join(root_dir, cate, 'train')) \
and os.path.isdir(os.path.join(root_dir, cate, 'test')):
self.cates.append(cate)
assert len(self.cates) == 40, "%s %s" % (len(self.cates), self.cates)
# For non-aligned MN
# self.gravity_axis = 0
# self.display_axis_order = [0,1,2]
# Aligned MN has same axis-order as SN
self.gravity_axis = 1
self.display_axis_order = [0, 2, 1]
super(ModelNet40PointClouds, self).__init__(
root_dir, self.cates, tr_sample_size=tr_sample_size,
te_sample_size=te_sample_size, split=split, scale=scale,
normalize_per_shape=normalize_per_shape,
normalize_std_per_axis=normalize_std_per_axis,
random_subsample=random_subsample,
all_points_mean=all_points_mean, all_points_std=all_points_std,
input_dim=3)
class ModelNet10PointClouds(Uniform15KPC):
def __init__(self, root_dir="data/ModelNet10.PC15k",
tr_sample_size=10000, te_sample_size=2048,
split='train', scale=1., normalize_per_shape=False,
normalize_std_per_axis=False,
random_subsample=False,
all_points_mean=None, all_points_std=None):
self.root_dir = root_dir
self.split = split
assert self.split in ['train', 'test']
self.cates = []
for cate in os.listdir(root_dir):
if os.path.isdir(os.path.join(root_dir, cate)) \
and os.path.isdir(os.path.join(root_dir, cate, 'train')) \
and os.path.isdir(os.path.join(root_dir, cate, 'test')):
self.cates.append(cate)
assert len(self.cates) == 10
# That's prealigned MN
# self.gravity_axis = 0
# self.display_axis_order = [0,1,2]
# Aligned MN has same axis-order as SN
self.gravity_axis = 1
self.display_axis_order = [0, 2, 1]
super(ModelNet10PointClouds, self).__init__(
root_dir, self.cates, tr_sample_size=tr_sample_size,
te_sample_size=te_sample_size, split=split, scale=scale,
normalize_per_shape=normalize_per_shape,
normalize_std_per_axis=normalize_std_per_axis,
random_subsample=random_subsample,
all_points_mean=all_points_mean, all_points_std=all_points_std,
input_dim=3)
class ShapeNet15kPointClouds(Uniform15KPC):
def __init__(self, root_dir="data/ShapeNetCore.v2.PC15k",
categories=['airplane'], tr_sample_size=10000, te_sample_size=2048,
split='train', scale=1., normalize_per_shape=False,
normalize_std_per_axis=False,
random_subsample=False,
all_points_mean=None, all_points_std=None):
self.root_dir = root_dir
self.split = split
assert self.split in ['train', 'test', 'val']
self.tr_sample_size = tr_sample_size
self.te_sample_size = te_sample_size
self.cates = categories
if 'all' in categories:
self.synset_ids = list(cate_to_synsetid.values())
else:
self.synset_ids = [cate_to_synsetid[c] for c in self.cates]
# assert 'v2' in root_dir, "Only supporting v2 right now."
self.gravity_axis = 1
self.display_axis_order = [0, 2, 1]
super(ShapeNet15kPointClouds, self).__init__(
root_dir, self.synset_ids,
tr_sample_size=tr_sample_size,
te_sample_size=te_sample_size,
split=split, scale=scale,
normalize_per_shape=normalize_per_shape,
normalize_std_per_axis=normalize_std_per_axis,
random_subsample=random_subsample,
all_points_mean=all_points_mean, all_points_std=all_points_std,
input_dim=3)
def init_np_seed(worker_id):
seed = torch.initial_seed()
np.random.seed(seed % 4294967296)
def _get_MN40_datasets_(args, data_dir=None):
tr_dataset = ModelNet40PointClouds(
split='train',
tr_sample_size=args.tr_max_sample_points,
te_sample_size=args.te_max_sample_points,
root_dir=(args.data_dir if data_dir is None else data_dir),
normalize_per_shape=args.normalize_per_shape,
normalize_std_per_axis=args.normalize_std_per_axis,
random_subsample=True)
te_dataset = ModelNet40PointClouds(
split='test',
tr_sample_size=args.tr_max_sample_points,
te_sample_size=args.te_max_sample_points,
root_dir=(args.data_dir if data_dir is None else data_dir),
normalize_per_shape=args.normalize_per_shape,
normalize_std_per_axis=args.normalize_std_per_axis,
all_points_mean=tr_dataset.all_points_mean,
all_points_std=tr_dataset.all_points_std,
)
return tr_dataset, te_dataset
def _get_MN10_datasets_(args, data_dir=None):
tr_dataset = ModelNet10PointClouds(
split='train',
tr_sample_size=args.tr_max_sample_points,
te_sample_size=args.te_max_sample_points,
root_dir=(args.data_dir if data_dir is None else data_dir),
normalize_per_shape=args.normalize_per_shape,
normalize_std_per_axis=args.normalize_std_per_axis,
random_subsample=True)
te_dataset = ModelNet10PointClouds(
split='test',
tr_sample_size=args.tr_max_sample_points,
te_sample_size=args.te_max_sample_points,
root_dir=(args.data_dir if data_dir is None else data_dir),
normalize_per_shape=args.normalize_per_shape,
normalize_std_per_axis=args.normalize_std_per_axis,
all_points_mean=tr_dataset.all_points_mean,
all_points_std=tr_dataset.all_points_std,
)
return tr_dataset, te_dataset
def get_datasets(args):
if args.dataset_type == 'shapenet15k':
tr_dataset = ShapeNet15kPointClouds(
categories=args.cates, split='train',
tr_sample_size=args.tr_max_sample_points,
te_sample_size=args.te_max_sample_points,
scale=args.dataset_scale, root_dir=args.data_dir,
normalize_per_shape=args.normalize_per_shape,
normalize_std_per_axis=args.normalize_std_per_axis,
random_subsample=True)
te_dataset = ShapeNet15kPointClouds(
categories=args.cates, split='val',
tr_sample_size=args.tr_max_sample_points,
te_sample_size=args.te_max_sample_points,
scale=args.dataset_scale, root_dir=args.data_dir,
normalize_per_shape=args.normalize_per_shape,
normalize_std_per_axis=args.normalize_std_per_axis,
all_points_mean=tr_dataset.all_points_mean,
all_points_std=tr_dataset.all_points_std,
)
elif args.dataset_type == 'modelnet40_15k':
tr_dataset, te_dataset = _get_MN40_datasets_(args)
elif args.dataset_type == 'modelnet10_15k':
tr_dataset, te_dataset = _get_MN10_datasets_(args)
else:
raise Exception("Invalid dataset type:%s" % args.dataset_type)
return tr_dataset, te_dataset
def get_clf_datasets(args):
return {
'MN40': _get_MN40_datasets_(args, data_dir=args.mn40_data_dir),
'MN10': _get_MN10_datasets_(args, data_dir=args.mn10_data_dir),
}
def get_data_loaders(args):
tr_dataset, te_dataset = get_datasets(args)
train_loader = data.DataLoader(
dataset=tr_dataset, batch_size=args.batch_size,
shuffle=True, num_workers=args.num_workers, drop_last=True,
worker_init_fn=init_np_seed)
train_unshuffle_loader = data.DataLoader(
dataset=tr_dataset, batch_size=args.batch_size,
shuffle=False, num_workers=args.num_workers, drop_last=True,
worker_init_fn=init_np_seed)
test_loader = data.DataLoader(
dataset=te_dataset, batch_size=args.batch_size,
shuffle=False, num_workers=args.num_workers, drop_last=False,
worker_init_fn=init_np_seed)
loaders = {
"test_loader": test_loader,
'train_loader': train_loader,
'train_unshuffle_loader': train_unshuffle_loader,
}
return loaders
if __name__ == "__main__":
shape_ds = ShapeNet15kPointClouds(categories=['airplane'], split='val')
x_tr, x_te = next(iter(shape_ds))
print(x_tr.shape)
print(x_te.shape)