PointFlow/train.py
2019-07-13 21:32:26 -07:00

273 lines
12 KiB
Python

import sys
import os
import torch
import torch.distributed as dist
import torch.nn as nn
import warnings
import torch.distributed
import numpy as np
import random
import faulthandler
import torch.multiprocessing as mp
import time
import scipy.misc
from models.networks import PointFlow
from torch import optim
from args import get_args
from torch.backends import cudnn
from utils import AverageValueMeter, set_random_seed, apply_random_rotation, save, resume, visualize_point_clouds
from tensorboardX import SummaryWriter
from datasets import get_datasets, init_np_seed
faulthandler.enable()
def main_worker(gpu, save_dir, ngpus_per_node, args):
# basic setup
cudnn.benchmark = True
args.gpu = gpu
if args.gpu is not None:
print("Use GPU: {} for training".format(args.gpu))
if args.distributed:
if args.dist_url == "env://" and args.rank == -1:
args.rank = int(os.environ["RANK"])
if args.distributed:
args.rank = args.rank * ngpus_per_node + gpu
dist.init_process_group(backend=args.dist_backend, init_method=args.dist_url,
world_size=args.world_size, rank=args.rank)
if args.log_name is not None:
log_dir = "runs/%s" % args.log_name
else:
log_dir = "runs/time-%d" % time.time()
if not args.distributed or (args.rank % ngpus_per_node == 0):
writer = SummaryWriter(logdir=log_dir)
else:
writer = None
if not args.use_latent_flow: # auto-encoder only
args.prior_weight = 0
args.entropy_weight = 0
# multi-GPU setup
model = PointFlow(args)
if args.distributed: # Multiple processes, single GPU per process
if args.gpu is not None:
def _transform_(m):
return nn.parallel.DistributedDataParallel(
m, device_ids=[args.gpu], output_device=args.gpu, check_reduction=True)
torch.cuda.set_device(args.gpu)
model.cuda(args.gpu)
model.multi_gpu_wrapper(_transform_)
args.batch_size = int(args.batch_size / ngpus_per_node)
args.workers = 0
else:
assert 0, "DistributedDataParallel constructor should always set the single device scope"
elif args.gpu is not None: # Single process, single GPU per process
torch.cuda.set_device(args.gpu)
model = model.cuda(args.gpu)
else: # Single process, multiple GPUs per process
def _transform_(m):
return nn.DataParallel(m)
model = model.cuda()
model.multi_gpu_wrapper(_transform_)
# resume checkpoints
start_epoch = 0
optimizer = model.make_optimizer(args)
if args.resume_checkpoint is None and os.path.exists(os.path.join(save_dir, 'checkpoint-latest.pt')):
args.resume_checkpoint = os.path.join(save_dir, 'checkpoint-latest.pt') # use the latest checkpoint
if args.resume_checkpoint is not None:
if args.resume_optimizer:
model, optimizer, start_epoch = resume(
args.resume_checkpoint, model, optimizer, strict=(not args.resume_non_strict))
else:
model, _, start_epoch = resume(
args.resume_checkpoint, model, optimizer=None, strict=(not args.resume_non_strict))
print('Resumed from: ' + args.resume_checkpoint)
# initialize datasets and loaders
tr_dataset, te_dataset = get_datasets(args)
if args.distributed:
train_sampler = torch.utils.data.distributed.DistributedSampler(tr_dataset)
else:
train_sampler = None
train_loader = torch.utils.data.DataLoader(
dataset=tr_dataset, batch_size=args.batch_size, shuffle=(train_sampler is None),
num_workers=0, pin_memory=True, sampler=train_sampler, drop_last=True,
worker_init_fn=init_np_seed)
test_loader = torch.utils.data.DataLoader(
dataset=te_dataset, batch_size=args.batch_size, shuffle=False,
num_workers=0, pin_memory=True, drop_last=False,
worker_init_fn=init_np_seed)
# save dataset statistics
if not args.distributed or (args.rank % ngpus_per_node == 0):
np.save(os.path.join(save_dir, "train_set_mean.npy"), tr_dataset.all_points_mean)
np.save(os.path.join(save_dir, "train_set_std.npy"), tr_dataset.all_points_std)
np.save(os.path.join(save_dir, "train_set_idx.npy"), np.array(tr_dataset.shuffle_idx))
np.save(os.path.join(save_dir, "val_set_mean.npy"), te_dataset.all_points_mean)
np.save(os.path.join(save_dir, "val_set_std.npy"), te_dataset.all_points_std)
np.save(os.path.join(save_dir, "val_set_idx.npy"), np.array(te_dataset.shuffle_idx))
# load classification dataset if needed
if args.eval_classification:
from datasets import get_clf_datasets
def _make_data_loader_(dataset):
return torch.utils.data.DataLoader(
dataset=dataset, batch_size=args.batch_size, shuffle=False,
num_workers=0, pin_memory=True, drop_last=False,
worker_init_fn=init_np_seed
)
clf_datasets = get_clf_datasets(args)
clf_loaders = {
k: [_make_data_loader_(ds) for ds in ds_lst] for k, ds_lst in clf_datasets.items()
}
else:
clf_loaders = None
# initialize the learning rate scheduler
if args.scheduler == 'exponential':
scheduler = optim.lr_scheduler.ExponentialLR(optimizer, args.exp_decay)
elif args.scheduler == 'step':
scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=args.epochs // 2, gamma=0.1)
elif args.scheduler == 'linear':
def lambda_rule(ep):
lr_l = 1.0 - max(0, ep - 0.5 * args.epochs) / float(0.5 * args.epochs)
return lr_l
scheduler = optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda_rule)
else:
assert 0, "args.schedulers should be either 'exponential' or 'linear'"
# main training loop
start_time = time.time()
entropy_avg_meter = AverageValueMeter()
latent_nats_avg_meter = AverageValueMeter()
point_nats_avg_meter = AverageValueMeter()
if args.distributed:
print("[Rank %d] World size : %d" % (args.rank, dist.get_world_size()))
print("Start epoch: %d End epoch: %d" % (start_epoch, args.epochs))
for epoch in range(start_epoch, args.epochs):
if args.distributed:
train_sampler.set_epoch(epoch)
# adjust the learning rate
if (epoch + 1) % args.exp_decay_freq == 0:
scheduler.step(epoch=epoch)
if writer is not None:
writer.add_scalar('lr/optimizer', scheduler.get_lr()[0], epoch)
# train for one epoch
for bidx, data in enumerate(train_loader):
idx_batch, tr_batch, te_batch = data['idx'], data['train_points'], data['test_points']
step = bidx + len(train_loader) * epoch
model.train()
if args.random_rotate:
tr_batch, _, _ = apply_random_rotation(
tr_batch, rot_axis=train_loader.dataset.gravity_axis)
inputs = tr_batch.cuda(args.gpu, non_blocking=True)
out = model(inputs, optimizer, step, writer)
entropy, prior_nats, recon_nats = out['entropy'], out['prior_nats'], out['recon_nats']
entropy_avg_meter.update(entropy)
point_nats_avg_meter.update(recon_nats)
latent_nats_avg_meter.update(prior_nats)
if step % args.log_freq == 0:
duration = time.time() - start_time
start_time = time.time()
print("[Rank %d] Epoch %d Batch [%2d/%2d] Time [%3.2fs] Entropy %2.5f LatentNats %2.5f PointNats %2.5f"
% (args.rank, epoch, bidx, len(train_loader), duration, entropy_avg_meter.avg,
latent_nats_avg_meter.avg, point_nats_avg_meter.avg))
# evaluate on the validation set
if not args.no_validation and (epoch + 1) % args.val_freq == 0:
from utils import validate
validate(test_loader, model, epoch, writer, save_dir, args, clf_loaders=clf_loaders)
# save visualizations
if (epoch + 1) % args.viz_freq == 0:
# reconstructions
model.eval()
samples = model.reconstruct(inputs)
results = []
for idx in range(min(10, inputs.size(0))):
res = visualize_point_clouds(samples[idx], inputs[idx], idx,
pert_order=train_loader.dataset.display_axis_order)
results.append(res)
res = np.concatenate(results, axis=1)
scipy.misc.imsave(os.path.join(save_dir, 'images', 'tr_vis_conditioned_epoch%d-gpu%s.png' % (epoch, args.gpu)),
res.transpose((1, 2, 0)))
if writer is not None:
writer.add_image('tr_vis/conditioned', torch.as_tensor(res), epoch)
# samples
if args.use_latent_flow:
num_samples = min(10, inputs.size(0))
num_points = inputs.size(1)
_, samples = model.sample(num_samples, num_points)
results = []
for idx in range(num_samples):
res = visualize_point_clouds(samples[idx], inputs[idx], idx,
pert_order=train_loader.dataset.display_axis_order)
results.append(res)
res = np.concatenate(results, axis=1)
scipy.misc.imsave(os.path.join(save_dir, 'images', 'tr_vis_conditioned_epoch%d-gpu%s.png' % (epoch, args.gpu)),
res.transpose((1, 2, 0)))
if writer is not None:
writer.add_image('tr_vis/sampled', torch.as_tensor(res), epoch)
# save checkpoints
if not args.distributed or (args.rank % ngpus_per_node == 0):
if (epoch + 1) % args.save_freq == 0:
save(model, optimizer, epoch + 1,
os.path.join(save_dir, 'checkpoint-%d.pt' % epoch))
save(model, optimizer, epoch + 1,
os.path.join(save_dir, 'checkpoint-latest.pt'))
def main():
# command line args
args = get_args()
save_dir = os.path.join("checkpoints", args.log_name)
if not os.path.exists(save_dir):
os.makedirs(save_dir)
os.makedirs(os.path.join(save_dir, 'images'))
with open(os.path.join(save_dir, 'command.sh'), 'w') as f:
f.write('python -X faulthandler ' + ' '.join(sys.argv))
f.write('\n')
if args.seed is None:
args.seed = random.randint(0, 1000000)
set_random_seed(args.seed)
if args.gpu is not None:
warnings.warn('You have chosen a specific GPU. This will completely '
'disable data parallelism.')
if args.dist_url == "env://" and args.world_size == -1:
args.world_size = int(os.environ["WORLD_SIZE"])
if args.sync_bn:
assert args.distributed
print("Arguments:")
print(args)
ngpus_per_node = torch.cuda.device_count()
if args.distributed:
args.world_size = ngpus_per_node * args.world_size
mp.spawn(main_worker, nprocs=ngpus_per_node, args=(save_dir, ngpus_per_node, args))
else:
main_worker(args.gpu, save_dir, ngpus_per_node, args)
if __name__ == '__main__':
main()