PointFlow/utils.py
2019-07-13 21:32:26 -07:00

379 lines
12 KiB
Python

from pprint import pprint
from sklearn.svm import LinearSVC
from math import log, pi
import os
import torch
import torch.distributed as dist
import random
import numpy as np
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
class AverageValueMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0.0
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0.0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def gaussian_log_likelihood(x, mean, logvar, clip=True):
if clip:
logvar = torch.clamp(logvar, min=-4, max=3)
a = log(2 * pi)
b = logvar
c = (x - mean) ** 2 / torch.exp(logvar)
return -0.5 * torch.sum(a + b + c)
def bernoulli_log_likelihood(x, p, clip=True, eps=1e-6):
if clip:
p = torch.clamp(p, min=eps, max=1 - eps)
return torch.sum((x * torch.log(p)) + ((1 - x) * torch.log(1 - p)))
def kl_diagnormal_stdnormal(mean, logvar):
a = mean ** 2
b = torch.exp(logvar)
c = -1
d = -logvar
return 0.5 * torch.sum(a + b + c + d)
def kl_diagnormal_diagnormal(q_mean, q_logvar, p_mean, p_logvar):
# Ensure correct shapes since no numpy broadcasting yet
p_mean = p_mean.expand_as(q_mean)
p_logvar = p_logvar.expand_as(q_logvar)
a = p_logvar
b = - 1
c = - q_logvar
d = ((q_mean - p_mean) ** 2 + torch.exp(q_logvar)) / torch.exp(p_logvar)
return 0.5 * torch.sum(a + b + c + d)
# Taken from https://discuss.pytorch.org/t/implementing-truncated-normal-initializer/4778/15
def truncated_normal(tensor, mean=0, std=1, trunc_std=2):
size = tensor.shape
tmp = tensor.new_empty(size + (4,)).normal_()
valid = (tmp < trunc_std) & (tmp > -trunc_std)
ind = valid.max(-1, keepdim=True)[1]
tensor.data.copy_(tmp.gather(-1, ind).squeeze(-1))
tensor.data.mul_(std).add_(mean)
return tensor
def reduce_tensor(tensor, world_size=None):
rt = tensor.clone()
dist.all_reduce(rt, op=dist.ReduceOp.SUM)
if world_size is None:
world_size = dist.get_world_size()
rt /= world_size
return rt
def standard_normal_logprob(z):
dim = z.size(-1)
log_z = -0.5 * dim * log(2 * pi)
return log_z - z.pow(2) / 2
def set_random_seed(seed):
"""set random seed"""
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
# Visualization
def visualize_point_clouds(pts, gtr, idx, pert_order=[0, 1, 2]):
pts = pts.cpu().detach().numpy()[:, pert_order]
gtr = gtr.cpu().detach().numpy()[:, pert_order]
fig = plt.figure(figsize=(6, 3))
ax1 = fig.add_subplot(121, projection='3d')
ax1.set_title("Sample:%s" % idx)
ax1.scatter(pts[:, 0], pts[:, 1], pts[:, 2], s=5)
ax2 = fig.add_subplot(122, projection='3d')
ax2.set_title("Ground Truth:%s" % idx)
ax2.scatter(gtr[:, 0], gtr[:, 1], gtr[:, 2], s=5)
fig.canvas.draw()
# grab the pixel buffer and dump it into a numpy array
res = np.array(fig.canvas.renderer._renderer)
res = np.transpose(res, (2, 0, 1))
plt.close()
return res
# Augmentation
def apply_random_rotation(pc, rot_axis=1):
B = pc.shape[0]
theta = np.random.rand(B) * 2 * np.pi
zeros = np.zeros(B)
ones = np.ones(B)
cos = np.cos(theta)
sin = np.sin(theta)
if rot_axis == 0:
rot = np.stack([
cos, -sin, zeros,
sin, cos, zeros,
zeros, zeros, ones
]).T.reshape(B, 3, 3)
elif rot_axis == 1:
rot = np.stack([
cos, zeros, -sin,
zeros, ones, zeros,
sin, zeros, cos
]).T.reshape(B, 3, 3)
elif rot_axis == 2:
rot = np.stack([
ones, zeros, zeros,
zeros, cos, -sin,
zeros, sin, cos
]).T.reshape(B, 3, 3)
else:
raise Exception("Invalid rotation axis")
rot = torch.from_numpy(rot).to(pc)
# (B, N, 3) mul (B, 3, 3) -> (B, N, 3)
pc_rotated = torch.bmm(pc, rot)
return pc_rotated, rot, theta
def validate_classification(loaders, model, args):
train_loader, test_loader = loaders
def _make_iter_(loader):
iterator = iter(loader)
return iterator
tr_latent = []
tr_label = []
for data in _make_iter_(train_loader):
tr_pc = data['train_points']
tr_pc = tr_pc.cuda() if args.gpu is None else tr_pc.cuda(args.gpu)
latent = model.encode(tr_pc)
label = data['cate_idx']
tr_latent.append(latent.cpu().detach().numpy())
tr_label.append(label.cpu().detach().numpy())
tr_label = np.concatenate(tr_label)
tr_latent = np.concatenate(tr_latent)
te_latent = []
te_label = []
for data in _make_iter_(test_loader):
tr_pc = data['train_points']
tr_pc = tr_pc.cuda() if args.gpu is None else tr_pc.cuda(args.gpu)
latent = model.encode(tr_pc)
label = data['cate_idx']
te_latent.append(latent.cpu().detach().numpy())
te_label.append(label.cpu().detach().numpy())
te_label = np.concatenate(te_label)
te_latent = np.concatenate(te_latent)
clf = LinearSVC(random_state=0)
clf.fit(tr_latent, tr_label)
test_pred = clf.predict(te_latent)
test_gt = te_label.flatten()
acc = np.mean((test_pred == test_gt).astype(float)) * 100.
res = {'acc': acc}
print("Acc:%s" % acc)
return res
def validate_conditioned(loader, model, args, max_samples=None, save_dir=None):
from metrics.evaluation_metrics import EMD_CD
all_idx = []
all_sample = []
all_ref = []
ttl_samples = 0
iterator = iter(loader)
for data in iterator:
# idx_b, tr_pc, te_pc = data[:3]
idx_b, tr_pc, te_pc = data['idx'], data['train_points'], data['test_points']
tr_pc = tr_pc.cuda() if args.gpu is None else tr_pc.cuda(args.gpu)
te_pc = te_pc.cuda() if args.gpu is None else te_pc.cuda(args.gpu)
if tr_pc.size(1) > te_pc.size(1):
tr_pc = tr_pc[:, :te_pc.size(1), :]
out_pc = model.reconstruct(tr_pc, num_points=te_pc.size(1))
# denormalize
m, s = data['mean'].float(), data['std'].float()
m = m.cuda() if args.gpu is None else m.cuda(args.gpu)
s = s.cuda() if args.gpu is None else s.cuda(args.gpu)
out_pc = out_pc * s + m
te_pc = te_pc * s + m
all_sample.append(out_pc)
all_ref.append(te_pc)
all_idx.append(idx_b)
ttl_samples += int(te_pc.size(0))
if max_samples is not None and ttl_samples >= max_samples:
break
# Compute MMD and CD
sample_pcs = torch.cat(all_sample, dim=0)
ref_pcs = torch.cat(all_ref, dim=0)
print("[rank %s] Recon Sample size:%s Ref size: %s" % (args.rank, sample_pcs.size(), ref_pcs.size()))
if save_dir is not None and args.save_val_results:
smp_pcs_save_name = os.path.join(save_dir, "smp_recon_pcls_gpu%s.npy" % args.gpu)
ref_pcs_save_name = os.path.join(save_dir, "ref_recon_pcls_gpu%s.npy" % args.gpu)
np.save(smp_pcs_save_name, sample_pcs.cpu().detach().numpy())
np.save(ref_pcs_save_name, ref_pcs.cpu().detach().numpy())
print("Saving file:%s %s" % (smp_pcs_save_name, ref_pcs_save_name))
res = EMD_CD(sample_pcs, ref_pcs, args.batch_size, accelerated_cd=True)
mmd_cd = res['MMD-CD'] if 'MMD-CD' in res else None
mmd_emd = res['MMD-EMD'] if 'MMD-EMD' in res else None
print("MMD-CD :%s" % mmd_cd)
print("MMD-EMD :%s" % mmd_emd)
return res
def validate_sample(loader, model, args, max_samples=None, save_dir=None):
from metrics.evaluation_metrics import compute_all_metrics, jsd_between_point_cloud_sets as JSD
all_sample = []
all_ref = []
ttl_samples = 0
iterator = iter(loader)
for data in iterator:
idx_b, te_pc = data['idx'], data['test_points']
te_pc = te_pc.cuda() if args.gpu is None else te_pc.cuda(args.gpu)
_, out_pc = model.sample(te_pc.size(0), te_pc.size(1), gpu=args.gpu)
# denormalize
m, s = data['mean'].float(), data['std'].float()
m = m.cuda() if args.gpu is None else m.cuda(args.gpu)
s = s.cuda() if args.gpu is None else s.cuda(args.gpu)
out_pc = out_pc * s + m
te_pc = te_pc * s + m
all_sample.append(out_pc)
all_ref.append(te_pc)
ttl_samples += int(te_pc.size(0))
if max_samples is not None and ttl_samples >= max_samples:
break
sample_pcs = torch.cat(all_sample, dim=0)
ref_pcs = torch.cat(all_ref, dim=0)
print("[rank %s] Generation Sample size:%s Ref size: %s"
% (args.rank, sample_pcs.size(), ref_pcs.size()))
if save_dir is not None and args.save_val_results:
smp_pcs_save_name = os.path.join(save_dir, "smp_syn_pcls_gpu%s.npy" % args.gpu)
ref_pcs_save_name = os.path.join(save_dir, "ref_syn_pcls_gpu%s.npy" % args.gpu)
np.save(smp_pcs_save_name, sample_pcs.cpu().detach().numpy())
np.save(ref_pcs_save_name, ref_pcs.cpu().detach().numpy())
print("Saving file:%s %s" % (smp_pcs_save_name, ref_pcs_save_name))
res = compute_all_metrics(sample_pcs, ref_pcs, args.batch_size, accelerated_cd=True)
pprint(res)
sample_pcs = sample_pcs.cpu().detach().numpy()
ref_pcs = ref_pcs.cpu().detach().numpy()
jsd = JSD(sample_pcs, ref_pcs)
jsd = torch.tensor(jsd).cuda() if args.gpu is None else torch.tensor(jsd).cuda(args.gpu)
res.update({"JSD": jsd})
print("JSD :%s" % jsd)
return res
def save(model, optimizer, epoch, path):
d = {
'epoch': epoch,
'model': model.state_dict(),
'optimizer': optimizer.state_dict()
}
torch.save(d, path)
def resume(path, model, optimizer=None, strict=True):
ckpt = torch.load(path)
model.load_state_dict(ckpt['model'], strict=strict)
start_epoch = ckpt['epoch']
if optimizer is not None:
optimizer.load_state_dict(ckpt['optimizer'])
return model, optimizer, start_epoch
def validate(test_loader, model, epoch, writer, save_dir, args, clf_loaders=None):
model.eval()
# Make epoch wise save directory
if writer is not None and args.save_val_results:
save_dir = os.path.join(save_dir, 'epoch-%d' % epoch)
if not os.path.isdir(save_dir):
os.makedirs(save_dir)
else:
save_dir = None
# classification
if args.eval_classification and clf_loaders is not None:
for clf_expr, loaders in clf_loaders.items():
with torch.no_grad():
clf_val_res = validate_classification(loaders, model, args)
for k, v in clf_val_res.items():
if writer is not None and v is not None:
writer.add_scalar('val_%s/%s' % (clf_expr, k), v, epoch)
# samples
if args.use_latent_flow:
with torch.no_grad():
val_sample_res = validate_sample(
test_loader, model, args, max_samples=args.max_validate_shapes,
save_dir=save_dir)
for k, v in val_sample_res.items():
if not isinstance(v, float):
v = v.cpu().detach().item()
if writer is not None and v is not None:
writer.add_scalar('val_sample/%s' % k, v, epoch)
# reconstructions
with torch.no_grad():
val_res = validate_conditioned(
test_loader, model, args, max_samples=args.max_validate_shapes,
save_dir=save_dir)
for k, v in val_res.items():
if not isinstance(v, float):
v = v.cpu().detach().item()
if writer is not None and v is not None:
writer.add_scalar('val_conditioned/%s' % k, v, epoch)