PointMLP/classification_ModelNet40/voting.py

197 lines
7.9 KiB
Python
Raw Normal View History

2021-10-04 07:22:15 +00:00
import argparse
import os
import datetime
import torch
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim
import torch.utils.data
import torch.utils.data.distributed
from torch.utils.data import DataLoader
import models as models
from utils import progress_bar, IOStream
from data import ModelNet40
import sklearn.metrics as metrics
from helper import cal_loss
import numpy as np
import torch.nn.functional as F
model_names = sorted(name for name in models.__dict__
if callable(models.__dict__[name]))
def parse_args():
"""Parameters"""
parser = argparse.ArgumentParser('training')
parser.add_argument('-c', '--checkpoint', type=str, metavar='PATH',
help='path to save checkpoint (default: checkpoint)')
parser.add_argument('--msg', type=str, help='message after checkpoint')
parser.add_argument('--batch_size', type=int, default=32, help='batch size in training')
parser.add_argument('--model', default='model31A', help='model name [default: pointnet_cls]')
parser.add_argument('--num_classes', default=40, type=int, choices=[10, 40], help='training on ModelNet10/40')
parser.add_argument('--num_points', type=int, default=1024, help='Point Number')
parser.add_argument('--seed', type=int, help='random seed (default: 1)')
# Voting evaluation, referring: https://github.com/CVMI-Lab/PAConv/blob/main/obj_cls/eval_voting.py
parser.add_argument('--NUM_PEPEAT', type=int, default=300)
parser.add_argument('--NUM_VOTE', type=int, default=10)
parser.add_argument('--validate', action='store_true', help='Validate the original testing result.')
return parser.parse_args()
2021-10-04 08:00:01 +00:00
class PointcloudScale(object): # input random scaling
2021-10-04 07:22:15 +00:00
def __init__(self, scale_low=2. / 3., scale_high=3. / 2.):
self.scale_low = scale_low
self.scale_high = scale_high
def __call__(self, pc):
bsize = pc.size()[0]
for i in range(bsize):
xyz1 = np.random.uniform(low=self.scale_low, high=self.scale_high, size=[3])
pc[i, :, 0:3] = torch.mul(pc[i, :, 0:3], torch.from_numpy(xyz1).float().cuda())
return pc
2021-10-04 08:00:01 +00:00
2021-10-04 07:22:15 +00:00
def main():
args = parse_args()
print(f"args: {args}")
os.environ["HDF5_USE_FILE_LOCKING"] = "FALSE"
if args.seed is None:
args.seed = np.random.randint(1, 10000)
print(f"random seed is set to {args.seed}, the speed will slow down.")
torch.manual_seed(args.seed)
np.random.seed(args.seed)
torch.cuda.manual_seed_all(args.seed)
torch.cuda.manual_seed(args.seed)
torch.set_printoptions(10)
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
os.environ['PYTHONHASHSEED'] = str(args.seed)
if torch.cuda.is_available():
device = 'cuda'
else:
device = 'cpu'
print(f"==> Using device: {device}")
if args.msg is None:
message = str(datetime.datetime.now().strftime('-%Y%m%d%H%M%S'))
else:
2021-10-04 08:00:01 +00:00
message = "-" + args.msg
2021-10-04 07:22:15 +00:00
args.checkpoint = 'checkpoints/' + args.model + message
print('==> Preparing data..')
test_loader = DataLoader(ModelNet40(partition='test', num_points=args.num_points), num_workers=4,
2021-10-04 08:00:01 +00:00
batch_size=args.batch_size // 2, shuffle=False, drop_last=False)
2021-10-04 07:22:15 +00:00
# Model
print('==> Building model..')
net = models.__dict__[args.model]()
criterion = cal_loss
net = net.to(device)
checkpoint_path = os.path.join(args.checkpoint, 'best_checkpoint.pth')
checkpoint = torch.load(checkpoint_path, map_location=torch.device('cpu'))
# criterion = criterion.to(device)
if device == 'cuda':
net = torch.nn.DataParallel(net)
cudnn.benchmark = True
net.load_state_dict(checkpoint['net'])
if args.validate:
test_out = validate(net, test_loader, criterion, device)
print(f"Vanilla out: {test_out}")
print(f"Note 1: Please also load the random seed parameter (if forgot, see out.txt).\n"
f"Note 2: This result may vary little on different GPUs (and number of GPUs), we tested 2080Ti, P100, and V100.\n"
f"[note : Original result is achieved with V100 GPUs.]\n\n\n")
# Interestingly, we get original best_test_acc on 4 V100 gpus, but this model is trained on one V100 gpu.
# On different GPUs, and different number of GPUs, both OA and mean_acc vary a little.
# Also, the batch size also affect the testing results, could not understand.
print(f"===> start voting evaluation...")
voting(net, test_loader, device, args)
def validate(net, testloader, criterion, device):
net.eval()
test_loss = 0
correct = 0
total = 0
test_true = []
test_pred = []
time_cost = datetime.datetime.now()
with torch.no_grad():
for batch_idx, (data, label) in enumerate(testloader):
data, label = data.to(device), label.to(device).squeeze()
data = data.permute(0, 2, 1)
logits = net(data)
loss = criterion(logits, label)
test_loss += loss.item()
preds = logits.max(dim=1)[1]
test_true.append(label.cpu().numpy())
test_pred.append(preds.detach().cpu().numpy())
total += label.size(0)
correct += preds.eq(label).sum().item()
progress_bar(batch_idx, len(testloader), 'Loss: %.3f | Acc: %.3f%% (%d/%d)'
% (test_loss / (batch_idx + 1), 100. * correct / total, correct, total))
time_cost = int((datetime.datetime.now() - time_cost).total_seconds())
test_true = np.concatenate(test_true)
test_pred = np.concatenate(test_pred)
return {
"loss": float("%.3f" % (test_loss / (batch_idx + 1))),
"acc": float("%.3f" % (100. * metrics.accuracy_score(test_true, test_pred))),
"acc_avg": float("%.3f" % (100. * metrics.balanced_accuracy_score(test_true, test_pred))),
"time": time_cost
}
def voting(net, testloader, device, args):
2021-10-04 08:00:01 +00:00
name = '/evaluate_voting' + str(datetime.datetime.now().strftime('-%Y%m%d%H%M%S')) + 'seed_' + str(
args.seed) + '.log'
2021-10-04 07:22:15 +00:00
io = IOStream(args.checkpoint + name)
io.cprint(str(args))
net.eval()
best_acc = 0
best_mean_acc = 0
# pointscale = PointcloudScale(scale_low=0.8, scale_high=1.18) # set the range of scaling
# pointscale = PointcloudScale()
pointscale = PointcloudScale(scale_low=0.85, scale_high=1.15)
for i in range(args.NUM_PEPEAT):
test_true = []
test_pred = []
for batch_idx, (data, label) in enumerate(testloader):
data, label = data.to(device), label.to(device).squeeze()
pred = 0
for v in range(args.NUM_VOTE):
new_data = data
# batch_size = data.size()[0]
if v > 0:
new_data.data = pointscale(new_data.data)
with torch.no_grad():
pred += F.softmax(net(new_data.permute(0, 2, 1)), dim=1) # sum 10 preds
pred /= args.NUM_VOTE # avg the preds!
label = label.view(-1)
pred_choice = pred.max(dim=1)[1]
test_true.append(label.cpu().numpy())
test_pred.append(pred_choice.detach().cpu().numpy())
test_true = np.concatenate(test_true)
test_pred = np.concatenate(test_pred)
test_acc = 100. * metrics.accuracy_score(test_true, test_pred)
test_mean_acc = 100. * metrics.balanced_accuracy_score(test_true, test_pred)
if test_acc > best_acc:
best_acc = test_acc
if test_mean_acc > best_mean_acc:
best_mean_acc = test_mean_acc
outstr = 'Voting %d, test acc: %.3f, test mean acc: %.3f, [current best(all_acc: %.3f mean_acc: %.3f)]' % \
(i, test_acc, test_mean_acc, best_acc, best_mean_acc)
io.cprint(outstr)
final_outstr = 'Final voting test acc: %.6f,' % (best_acc * 100)
io.cprint(final_outstr)
if __name__ == '__main__':
main()