2021-10-04 07:58:19 +00:00
|
|
|
|
2021-10-04 07:22:15 +00:00
|
|
|
import argparse
|
|
|
|
import os
|
|
|
|
import logging
|
|
|
|
import datetime
|
|
|
|
import torch
|
|
|
|
import torch.nn.parallel
|
|
|
|
import torch.backends.cudnn as cudnn
|
|
|
|
import torch.optim
|
|
|
|
import torch.utils.data
|
|
|
|
import torch.utils.data.distributed
|
|
|
|
from torch.utils.data import DataLoader
|
|
|
|
import models as models
|
|
|
|
from utils import Logger, mkdir_p, progress_bar, save_model, save_args, cal_loss
|
|
|
|
from data import ModelNet40
|
|
|
|
from torch.optim.lr_scheduler import CosineAnnealingLR
|
|
|
|
import sklearn.metrics as metrics
|
|
|
|
import numpy as np
|
|
|
|
|
|
|
|
|
|
|
|
def parse_args():
|
|
|
|
"""Parameters"""
|
|
|
|
parser = argparse.ArgumentParser('training')
|
|
|
|
parser.add_argument('-c', '--checkpoint', type=str, metavar='PATH',
|
|
|
|
help='path to save checkpoint (default: checkpoint)')
|
|
|
|
parser.add_argument('--msg', type=str, help='message after checkpoint')
|
|
|
|
parser.add_argument('--batch_size', type=int, default=32, help='batch size in training')
|
|
|
|
parser.add_argument('--model', default='PointNet', help='model name [default: pointnet_cls]')
|
|
|
|
parser.add_argument('--epoch', default=200, type=int, help='number of epoch in training')
|
|
|
|
parser.add_argument('--num_points', type=int, default=1024, help='Point Number')
|
|
|
|
parser.add_argument('--learning_rate', default=0.1, type=float, help='learning rate in training')
|
|
|
|
parser.add_argument('--weight_decay', type=float, default=1e-4, help='decay rate')
|
|
|
|
parser.add_argument('--seed', type=int, help='random seed')
|
|
|
|
parser.add_argument('--workers', default=8, type=int, help='workers')
|
|
|
|
return parser.parse_args()
|
|
|
|
|
|
|
|
|
|
|
|
def main():
|
|
|
|
args = parse_args()
|
|
|
|
if args.seed is None:
|
|
|
|
args.seed = np.random.randint(1, 10000)
|
|
|
|
os.environ["HDF5_USE_FILE_LOCKING"] = "FALSE"
|
|
|
|
|
|
|
|
assert torch.cuda.is_available(), "Please ensure codes are executed in cuda."
|
|
|
|
device = 'cuda'
|
|
|
|
if args.seed is not None:
|
|
|
|
torch.manual_seed(args.seed)
|
|
|
|
np.random.seed(args.seed)
|
|
|
|
torch.cuda.manual_seed_all(args.seed)
|
|
|
|
torch.cuda.manual_seed(args.seed)
|
|
|
|
torch.set_printoptions(10)
|
|
|
|
torch.backends.cudnn.benchmark = False
|
|
|
|
torch.backends.cudnn.deterministic = True
|
|
|
|
os.environ['PYTHONHASHSEED'] = str(args.seed)
|
|
|
|
time_str = str(datetime.datetime.now().strftime('-%Y%m%d%H%M%S'))
|
|
|
|
if args.msg is None:
|
|
|
|
message = time_str
|
|
|
|
else:
|
|
|
|
message = "-"+args.msg
|
|
|
|
args.checkpoint = 'checkpoints/' + args.model + message + '-'+str(args.seed)
|
|
|
|
if not os.path.isdir(args.checkpoint):
|
|
|
|
mkdir_p(args.checkpoint)
|
|
|
|
|
|
|
|
screen_logger = logging.getLogger("Model")
|
|
|
|
screen_logger.setLevel(logging.INFO)
|
|
|
|
formatter = logging.Formatter('%(message)s')
|
|
|
|
file_handler = logging.FileHandler(os.path.join(args.checkpoint, "out.txt"))
|
|
|
|
file_handler.setLevel(logging.INFO)
|
|
|
|
file_handler.setFormatter(formatter)
|
|
|
|
screen_logger.addHandler(file_handler)
|
|
|
|
def printf(str):
|
|
|
|
screen_logger.info(str)
|
|
|
|
print(str)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# Model
|
|
|
|
printf(f"args: {args}")
|
|
|
|
printf('==> Building model..')
|
|
|
|
net = models.__dict__[args.model]()
|
|
|
|
criterion = cal_loss
|
|
|
|
net = net.to(device)
|
|
|
|
# criterion = criterion.to(device)
|
|
|
|
if device == 'cuda':
|
|
|
|
net = torch.nn.DataParallel(net)
|
|
|
|
cudnn.benchmark = True
|
|
|
|
|
|
|
|
best_test_acc = 0. # best test accuracy
|
|
|
|
best_train_acc = 0.
|
|
|
|
best_test_acc_avg = 0.
|
|
|
|
best_train_acc_avg = 0.
|
|
|
|
best_test_loss = float("inf")
|
|
|
|
best_train_loss = float("inf")
|
|
|
|
start_epoch = 0 # start from epoch 0 or last checkpoint epoch
|
|
|
|
optimizer_dict = None
|
|
|
|
|
|
|
|
|
|
|
|
if not os.path.isfile(os.path.join(args.checkpoint, "last_checkpoint.pth")):
|
|
|
|
save_args(args)
|
|
|
|
logger = Logger(os.path.join(args.checkpoint, 'log.txt'), title="ModelNet" + args.model)
|
|
|
|
logger.set_names(["Epoch-Num", 'Learning-Rate',
|
|
|
|
'Train-Loss', 'Train-acc-B', 'Train-acc',
|
|
|
|
'Valid-Loss', 'Valid-acc-B', 'Valid-acc'])
|
|
|
|
else:
|
|
|
|
printf(f"Resuming last checkpoint from {args.checkpoint}")
|
|
|
|
checkpoint_path = os.path.join(args.checkpoint, "last_checkpoint.pth")
|
|
|
|
checkpoint = torch.load(checkpoint_path)
|
|
|
|
net.load_state_dict(checkpoint['net'])
|
|
|
|
start_epoch = checkpoint['epoch']
|
|
|
|
best_test_acc = checkpoint['best_test_acc']
|
|
|
|
best_train_acc = checkpoint['best_train_acc']
|
|
|
|
best_test_acc_avg = checkpoint['best_test_acc_avg']
|
|
|
|
best_train_acc_avg = checkpoint['best_train_acc_avg']
|
|
|
|
best_test_loss = checkpoint['best_test_loss']
|
|
|
|
best_train_loss = checkpoint['best_train_loss']
|
|
|
|
logger = Logger(os.path.join(args.checkpoint, 'log.txt'), title="ModelNet" + args.model, resume=True)
|
|
|
|
optimizer_dict = checkpoint['optimizer']
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
printf('==> Preparing data..')
|
|
|
|
train_loader = DataLoader(ModelNet40(partition='train', num_points=args.num_points), num_workers=args.workers,
|
|
|
|
batch_size=args.batch_size, shuffle=True, drop_last=True)
|
|
|
|
test_loader = DataLoader(ModelNet40(partition='test', num_points=args.num_points), num_workers=args.workers,
|
|
|
|
batch_size=args.batch_size//2, shuffle=False, drop_last=False)
|
|
|
|
|
|
|
|
optimizer = torch.optim.SGD(net.parameters(), lr=args.learning_rate, momentum=0.9, weight_decay=args.weight_decay)
|
|
|
|
if optimizer_dict is not None:
|
|
|
|
optimizer.load_state_dict(optimizer_dict)
|
|
|
|
scheduler = CosineAnnealingLR(optimizer, args.epoch, eta_min=1e-3, last_epoch=start_epoch-1)
|
|
|
|
|
|
|
|
|
|
|
|
for epoch in range(start_epoch, args.epoch):
|
|
|
|
printf('Epoch(%d/%s) Learning Rate %s:' % (epoch + 1, args.epoch, optimizer.param_groups[0]['lr']))
|
|
|
|
train_out = train(net, train_loader, optimizer, criterion, device) # {"loss", "acc", "acc_avg", "time"}
|
|
|
|
test_out = validate(net, test_loader, criterion, device)
|
|
|
|
scheduler.step()
|
|
|
|
|
|
|
|
if test_out["acc"] > best_test_acc:
|
|
|
|
best_test_acc = test_out["acc"]
|
|
|
|
is_best = True
|
|
|
|
else:
|
|
|
|
is_best = False
|
|
|
|
|
|
|
|
best_test_acc = test_out["acc"] if (test_out["acc"] > best_test_acc) else best_test_acc
|
|
|
|
best_train_acc = train_out["acc"] if (train_out["acc"] > best_train_acc) else best_train_acc
|
|
|
|
best_test_acc_avg = test_out["acc_avg"] if (test_out["acc_avg"] > best_test_acc_avg) else best_test_acc_avg
|
|
|
|
best_train_acc_avg = train_out["acc_avg"] if (train_out["acc_avg"] > best_train_acc_avg) else best_train_acc_avg
|
|
|
|
best_test_loss = test_out["loss"] if (test_out["loss"] < best_test_loss) else best_test_loss
|
|
|
|
best_train_loss = train_out["loss"] if (train_out["loss"] < best_train_loss) else best_train_loss
|
|
|
|
|
|
|
|
|
|
|
|
save_model(
|
|
|
|
net, epoch, path=args.checkpoint, acc=test_out["acc"], is_best=is_best,
|
|
|
|
best_test_acc=best_test_acc, # best test accuracy
|
|
|
|
best_train_acc = best_train_acc,
|
|
|
|
best_test_acc_avg = best_test_acc_avg,
|
|
|
|
best_train_acc_avg = best_train_acc_avg,
|
|
|
|
best_test_loss = best_test_loss,
|
|
|
|
best_train_loss = best_train_loss,
|
|
|
|
optimizer = optimizer.state_dict()
|
|
|
|
)
|
|
|
|
logger.append([epoch, optimizer.param_groups[0]['lr'],
|
|
|
|
train_out["loss"], train_out["acc_avg"], train_out["acc"],
|
|
|
|
test_out["loss"], test_out["acc_avg"], test_out["acc"]])
|
|
|
|
printf(
|
|
|
|
f"Training loss:{train_out['loss']} acc_avg:{train_out['acc_avg']}% acc:{train_out['acc']}% time:{train_out['time']}s")
|
|
|
|
printf(
|
|
|
|
f"Testing loss:{test_out['loss']} acc_avg:{test_out['acc_avg']}% "
|
|
|
|
f"acc:{test_out['acc']}% time:{test_out['time']}s [best test acc: {best_test_acc}%] \n\n")
|
|
|
|
logger.close()
|
|
|
|
|
|
|
|
printf(f"++++++++" * 2 + "Final results" + "++++++++" * 2)
|
|
|
|
printf(f"++ Last Train time: {train_out['time']} | Last Test time: {test_out['time']} ++")
|
|
|
|
printf(f"++ Best Train loss: {best_train_loss} | Best Test loss: {best_test_loss} ++")
|
|
|
|
printf(f"++ Best Train acc_B: {best_train_acc_avg} | Best Test acc_B: {best_test_acc_avg} ++")
|
|
|
|
printf(f"++ Best Train acc: {best_train_acc} | Best Test acc: {best_test_acc} ++")
|
|
|
|
printf(f"++++++++" * 5)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def train(net, trainloader, optimizer, criterion, device):
|
|
|
|
net.train()
|
|
|
|
train_loss = 0
|
|
|
|
correct = 0
|
|
|
|
total = 0
|
|
|
|
train_pred = []
|
|
|
|
train_true = []
|
|
|
|
time_cost = datetime.datetime.now()
|
|
|
|
for batch_idx, (data, label) in enumerate(trainloader):
|
|
|
|
data, label = data.to(device), label.to(device).squeeze()
|
|
|
|
data = data.permute(0, 2, 1) # so, the input data shape is [batch, 3, 1024]
|
|
|
|
optimizer.zero_grad()
|
|
|
|
logits = net(data)
|
|
|
|
loss = criterion(logits, label)
|
|
|
|
loss.backward()
|
|
|
|
torch.nn.utils.clip_grad_norm_(net.parameters(), 1)
|
|
|
|
optimizer.step()
|
|
|
|
train_loss += loss.item()
|
|
|
|
preds = logits.max(dim=1)[1]
|
|
|
|
|
|
|
|
train_true.append(label.cpu().numpy())
|
|
|
|
train_pred.append(preds.detach().cpu().numpy())
|
|
|
|
|
|
|
|
total += label.size(0)
|
|
|
|
correct += preds.eq(label).sum().item()
|
|
|
|
|
|
|
|
progress_bar(batch_idx, len(trainloader), 'Loss: %.3f | Acc: %.3f%% (%d/%d)'
|
|
|
|
% (train_loss / (batch_idx + 1), 100. * correct / total, correct, total))
|
|
|
|
|
|
|
|
time_cost = int((datetime.datetime.now() - time_cost).total_seconds())
|
|
|
|
train_true = np.concatenate(train_true)
|
|
|
|
train_pred = np.concatenate(train_pred)
|
|
|
|
return {
|
|
|
|
"loss": float("%.3f" % (train_loss / (batch_idx + 1))),
|
|
|
|
"acc": float("%.3f" % (100. * metrics.accuracy_score(train_true, train_pred))),
|
|
|
|
"acc_avg": float("%.3f" % (100. * metrics.balanced_accuracy_score(train_true, train_pred))),
|
|
|
|
"time": time_cost
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
def validate(net, testloader, criterion, device):
|
|
|
|
net.eval()
|
|
|
|
test_loss = 0
|
|
|
|
correct = 0
|
|
|
|
total = 0
|
|
|
|
test_true = []
|
|
|
|
test_pred = []
|
|
|
|
time_cost = datetime.datetime.now()
|
|
|
|
with torch.no_grad():
|
|
|
|
for batch_idx, (data, label) in enumerate(testloader):
|
|
|
|
data, label = data.to(device), label.to(device).squeeze()
|
|
|
|
data = data.permute(0, 2, 1)
|
|
|
|
logits = net(data)
|
|
|
|
loss = criterion(logits, label)
|
|
|
|
test_loss += loss.item()
|
|
|
|
preds = logits.max(dim=1)[1]
|
|
|
|
test_true.append(label.cpu().numpy())
|
|
|
|
test_pred.append(preds.detach().cpu().numpy())
|
|
|
|
total += label.size(0)
|
|
|
|
correct += preds.eq(label).sum().item()
|
|
|
|
progress_bar(batch_idx, len(testloader), 'Loss: %.3f | Acc: %.3f%% (%d/%d)'
|
|
|
|
% (test_loss / (batch_idx + 1), 100. * correct / total, correct, total))
|
|
|
|
|
|
|
|
time_cost = int((datetime.datetime.now() - time_cost).total_seconds())
|
|
|
|
test_true = np.concatenate(test_true)
|
|
|
|
test_pred = np.concatenate(test_pred)
|
|
|
|
return {
|
|
|
|
"loss": float("%.3f" % (test_loss / (batch_idx + 1))),
|
|
|
|
"acc": float("%.3f" % (100. * metrics.accuracy_score(test_true, test_pred))),
|
|
|
|
"acc_avg": float("%.3f" % (100. * metrics.balanced_accuracy_score(test_true, test_pred))),
|
|
|
|
"time": time_cost
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
main()
|