update
This commit is contained in:
parent
9f5d3b187e
commit
404c207db5
|
@ -1,52 +1,3 @@
|
|||
from __future__ import absolute_import
|
||||
from .pct import PCT
|
||||
from .pointConv import PointConv
|
||||
from .GDANet import GDANET
|
||||
from .GBNet import GBNet, DGCNN
|
||||
# from .PAconv import PAConv # could not excuted.
|
||||
from .CurveNet import CurveNet
|
||||
from .pctmlp import PCTMLP
|
||||
from .pointnet_noBN import PointNetNoBN
|
||||
from .pointnet2_affine import PointNet2Affine
|
||||
from .pointnet import PointNet
|
||||
from .pointnet_deep import PointNetDeep
|
||||
from .pointnet_deep_noBN import PointNetDeepNoBN
|
||||
from .pointnet2 import PointNet2
|
||||
from .pointnet2_noBN import PointNet2NoBN
|
||||
from .pointnetmlp import PointNetMLP
|
||||
from .model25 import model25H
|
||||
from .model26 import model26H, model26A, model26B, model26C, model26D
|
||||
from .model31 import model31A, model31B, model31C, model31D, model31E, model31F, model31G, model31H, model31I, \
|
||||
model31J, model31K, model31L, model31M, model31N
|
||||
from .model31NoRes import model31CNoRes
|
||||
|
||||
|
||||
from .model32 import model32A,model32C,model32D, model32E, model32F, model32G, model32H, model32I, model32J, model32K,\
|
||||
model32L, model32M, model32N, model32A2, model32A3, model32A4
|
||||
|
||||
from .model33 import model33A, model33B, model33C, model33D, model33E, model33F, model33G, model33H
|
||||
|
||||
|
||||
|
||||
from .pointsformer1 import pointsformer1A, pointsformer1B, pointsformer1C, pointsformer1D, pointsformer1H, \
|
||||
pointsformer1E, pointsformer1F, pointsformer1G, pointsformer1I
|
||||
|
||||
from .modelelite import modeleliteA, modeleliteB, modeleliteC, modeleliteD, modeleliteE, modeleliteF, modeleliteG
|
||||
from .modelelite2 import modelelite2A, modelelite2B, modelelite2C, modelelite2D, modelelite2E, modelelite2F, \
|
||||
modelelite2G, modelelite2H, modelelite2I, modelelite2J, modelelite2K, modelelite2L, \
|
||||
modelelite2A2, modelelite2B2, modelelite2C2, modelelite2D2, modelelite2E2, modelelite2F2, \
|
||||
modelelite2G2, modelelite2H2, modelelite2I2, modelelite2J2, modelelite2K2, modelelite2L2, \
|
||||
modelelite2A3, modelelite2B3, modelelite2C3, modelelite2D3, modelelite2E3, modelelite2F3, \
|
||||
modelelite2G3, modelelite2H3, modelelite2I3, modelelite2J3, modelelite2K3, modelelite2L3
|
||||
|
||||
from .modelelite3 import modelelite3A1, modelelite3A2, modelelite3B1, modelelite3B2, modelelite3C1, modelelite3C2, \
|
||||
modelelite3D1, modelelite3D2, modelelite3E1, modelelite3E2, modelelite3F1, modelelite3F2, modelelite3G1, \
|
||||
modelelite3G2, modelelite3H1, modelelite3H2, modelelite3I1, modelelite3I2, modelelite3J1, modelelite3J2, \
|
||||
modelelite3K1, modelelite3K2, modelelite3L1, modelelite3L2, modelelite3X1, modelelite3X2, modelelite3X3, \
|
||||
modelelite3X4, modelelite3X5, modelelite3X6, modelelite3X7, modelelite3X8, modelelite3X9, modelelite3X10, \
|
||||
modelelite3X11, modelelite3X12, modelelite3X13
|
||||
|
||||
from .pointsformer2 import pointsformer2A, pointsformer2B, pointsformer2C, pointsformer2D, pointsformer2E, \
|
||||
pointsformer2F, pointsformer2G, pointsformer2H, pointsformer2I, pointsformer2J, pointsformer2K, \
|
||||
pointsformer2L, pointsformer2M, pointsformer2N, pointsformer2O, pointsformer2P, pointsformer2Q, pointsformer2R
|
||||
# from .pointsformer2 import pointsformer2A, pointsformer2B
|
||||
from .pointmlp import pointMLP, pointMLPElite
|
||||
|
|
|
@ -1,624 +0,0 @@
|
|||
"""
|
||||
Based on model31, different configures for elite version.
|
||||
Based on model30, change the grouper operation by normalization.
|
||||
Based on model28, only change configurations, mainly the reducer.
|
||||
Based on model27, change to x-a, reorgnized structure
|
||||
Based on model25, simple LocalGrouper (not x-a), reorgnized structure
|
||||
Based on model24, using ReLU to replace GELU
|
||||
Based on model22, remove attention
|
||||
Bsed on model21, change FPS to random sampling.
|
||||
Exactly based on Model10, but ReLU to GeLU
|
||||
Based on Model8, add dropout and max, avg combine.
|
||||
Based on Local model, add residual connections.
|
||||
The extraction is doubled for depth.
|
||||
Learning Point Cloud with Progressively Local representation.
|
||||
[B,3,N] - {[B,G,K,d]-[B,G,d]} - {[B,G',K,d]-[B,G',d]} -cls
|
||||
"""
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
# from torch import einsum
|
||||
# from einops import rearrange, repeat
|
||||
from einops.layers.torch import Rearrange
|
||||
|
||||
|
||||
from pointnet2_ops import pointnet2_utils
|
||||
|
||||
|
||||
def get_activation(activation):
|
||||
if activation.lower() == 'gelu':
|
||||
return nn.GELU()
|
||||
elif activation.lower() == 'rrelu':
|
||||
return nn.RReLU(inplace=True)
|
||||
elif activation.lower() == 'selu':
|
||||
return nn.SELU(inplace=True)
|
||||
elif activation.lower() == 'silu':
|
||||
return nn.SiLU(inplace=True)
|
||||
elif activation.lower() == 'hardswish':
|
||||
return nn.Hardswish(inplace=True)
|
||||
elif activation.lower() == 'leakyrelu':
|
||||
return nn.LeakyReLU(inplace=True)
|
||||
else:
|
||||
return nn.ReLU(inplace=True)
|
||||
|
||||
|
||||
def square_distance(src, dst):
|
||||
"""
|
||||
Calculate Euclid distance between each two points.
|
||||
src^T * dst = xn * xm + yn * ym + zn * zm;
|
||||
sum(src^2, dim=-1) = xn*xn + yn*yn + zn*zn;
|
||||
sum(dst^2, dim=-1) = xm*xm + ym*ym + zm*zm;
|
||||
dist = (xn - xm)^2 + (yn - ym)^2 + (zn - zm)^2
|
||||
= sum(src**2,dim=-1)+sum(dst**2,dim=-1)-2*src^T*dst
|
||||
Input:
|
||||
src: source points, [B, N, C]
|
||||
dst: target points, [B, M, C]
|
||||
Output:
|
||||
dist: per-point square distance, [B, N, M]
|
||||
"""
|
||||
B, N, _ = src.shape
|
||||
_, M, _ = dst.shape
|
||||
dist = -2 * torch.matmul(src, dst.permute(0, 2, 1))
|
||||
dist += torch.sum(src ** 2, -1).view(B, N, 1)
|
||||
dist += torch.sum(dst ** 2, -1).view(B, 1, M)
|
||||
return dist
|
||||
|
||||
|
||||
def index_points(points, idx):
|
||||
"""
|
||||
Input:
|
||||
points: input points data, [B, N, C]
|
||||
idx: sample index data, [B, S]
|
||||
Return:
|
||||
new_points:, indexed points data, [B, S, C]
|
||||
"""
|
||||
device = points.device
|
||||
B = points.shape[0]
|
||||
view_shape = list(idx.shape)
|
||||
view_shape[1:] = [1] * (len(view_shape) - 1)
|
||||
repeat_shape = list(idx.shape)
|
||||
repeat_shape[0] = 1
|
||||
batch_indices = torch.arange(B, dtype=torch.long).to(device).view(view_shape).repeat(repeat_shape)
|
||||
new_points = points[batch_indices, idx, :]
|
||||
return new_points
|
||||
|
||||
|
||||
def farthest_point_sample(xyz, npoint):
|
||||
"""
|
||||
Input:
|
||||
xyz: pointcloud data, [B, N, 3]
|
||||
npoint: number of samples
|
||||
Return:
|
||||
centroids: sampled pointcloud index, [B, npoint]
|
||||
"""
|
||||
device = xyz.device
|
||||
B, N, C = xyz.shape
|
||||
centroids = torch.zeros(B, npoint, dtype=torch.long).to(device)
|
||||
distance = torch.ones(B, N).to(device) * 1e10
|
||||
farthest = torch.randint(0, N, (B,), dtype=torch.long).to(device)
|
||||
batch_indices = torch.arange(B, dtype=torch.long).to(device)
|
||||
for i in range(npoint):
|
||||
centroids[:, i] = farthest
|
||||
centroid = xyz[batch_indices, farthest, :].view(B, 1, 3)
|
||||
dist = torch.sum((xyz - centroid) ** 2, -1)
|
||||
distance = torch.min(distance, dist)
|
||||
farthest = torch.max(distance, -1)[1]
|
||||
return centroids
|
||||
|
||||
|
||||
def query_ball_point(radius, nsample, xyz, new_xyz):
|
||||
"""
|
||||
Input:
|
||||
radius: local region radius
|
||||
nsample: max sample number in local region
|
||||
xyz: all points, [B, N, 3]
|
||||
new_xyz: query points, [B, S, 3]
|
||||
Return:
|
||||
group_idx: grouped points index, [B, S, nsample]
|
||||
"""
|
||||
device = xyz.device
|
||||
B, N, C = xyz.shape
|
||||
_, S, _ = new_xyz.shape
|
||||
group_idx = torch.arange(N, dtype=torch.long).to(device).view(1, 1, N).repeat([B, S, 1])
|
||||
sqrdists = square_distance(new_xyz, xyz)
|
||||
group_idx[sqrdists > radius ** 2] = N
|
||||
group_idx = group_idx.sort(dim=-1)[0][:, :, :nsample]
|
||||
group_first = group_idx[:, :, 0].view(B, S, 1).repeat([1, 1, nsample])
|
||||
mask = group_idx == N
|
||||
group_idx[mask] = group_first[mask]
|
||||
return group_idx
|
||||
|
||||
|
||||
def knn_point(nsample, xyz, new_xyz):
|
||||
"""
|
||||
Input:
|
||||
nsample: max sample number in local region
|
||||
xyz: all points, [B, N, C]
|
||||
new_xyz: query points, [B, S, C]
|
||||
Return:
|
||||
group_idx: grouped points index, [B, S, nsample]
|
||||
"""
|
||||
sqrdists = square_distance(new_xyz, xyz)
|
||||
_, group_idx = torch.topk(sqrdists, nsample, dim=-1, largest=False, sorted=False)
|
||||
return group_idx
|
||||
|
||||
|
||||
class LocalGrouper(nn.Module):
|
||||
def __init__(self, channel, groups, kneighbors, use_xyz=True, normalize="center", **kwargs):
|
||||
"""
|
||||
Give xyz[b,p,3] and fea[b,p,d], return new_xyz[b,g,3] and new_fea[b,g,k,d]
|
||||
:param groups: groups number
|
||||
:param kneighbors: k-nerighbors
|
||||
:param kwargs: others
|
||||
"""
|
||||
super(LocalGrouper, self).__init__()
|
||||
self.groups = groups
|
||||
self.kneighbors = kneighbors
|
||||
self.use_xyz = use_xyz
|
||||
if normalize is not None:
|
||||
self.normalize = normalize.lower()
|
||||
else:
|
||||
self.normalize = None
|
||||
if self.normalize not in ["center", "anchor"]:
|
||||
print(f"Unrecognized normalize parameter (self.normalize), set to None. Should be one of [center, anchor].")
|
||||
self.normalize = None
|
||||
if self.normalize is not None:
|
||||
add_channel=3 if self.use_xyz else 0
|
||||
self.affine_alpha = nn.Parameter(torch.ones([1,1,1,channel + add_channel]))
|
||||
self.affine_beta = nn.Parameter(torch.zeros([1, 1, 1, channel + add_channel]))
|
||||
|
||||
def forward(self, xyz, points):
|
||||
B, N, C = xyz.shape
|
||||
S = self.groups
|
||||
xyz = xyz.contiguous() # xyz [btach, points, xyz]
|
||||
|
||||
# fps_idx = torch.multinomial(torch.linspace(0, N - 1, steps=N).repeat(B, 1).to(xyz.device), num_samples=self.groups, replacement=False).long()
|
||||
# fps_idx = farthest_point_sample(xyz, self.groups).long()
|
||||
fps_idx = pointnet2_utils.furthest_point_sample(xyz, self.groups).long() # [B, npoint]
|
||||
new_xyz = index_points(xyz, fps_idx) # [B, npoint, 3]
|
||||
new_points = index_points(points, fps_idx) # [B, npoint, d]
|
||||
|
||||
idx = knn_point(self.kneighbors, xyz, new_xyz)
|
||||
# idx = query_ball_point(radius, nsample, xyz, new_xyz)
|
||||
grouped_xyz = index_points(xyz, idx) # [B, npoint, k, 3]
|
||||
grouped_points = index_points(points, idx) # [B, npoint, k, d]
|
||||
if self.use_xyz:
|
||||
grouped_points = torch.cat([grouped_points, grouped_xyz],dim=-1) # [B, npoint, k, d+3]
|
||||
if self.normalize is not None:
|
||||
if self.normalize =="center":
|
||||
std, mean = torch.std_mean(grouped_points, dim=2, keepdim=True)
|
||||
if self.normalize =="anchor":
|
||||
mean = torch.cat([new_points, new_xyz],dim=-1) if self.use_xyz else new_points
|
||||
mean = mean.unsqueeze(dim=-2) # [B, npoint, 1, d+3]
|
||||
std = torch.std(grouped_points-mean)
|
||||
grouped_points = (grouped_points-mean)/(std + 1e-5)
|
||||
grouped_points = self.affine_alpha*grouped_points + self.affine_beta
|
||||
|
||||
new_points = torch.cat([grouped_points, new_points.view(B, S, 1, -1).repeat(1, 1, self.kneighbors, 1)], dim=-1)
|
||||
return new_xyz, new_points
|
||||
|
||||
|
||||
class ConvBNReLU1D(nn.Module):
|
||||
def __init__(self, in_channels, out_channels, kernel_size=1, bias=True, activation='relu'):
|
||||
super(ConvBNReLU1D, self).__init__()
|
||||
self.act = get_activation(activation)
|
||||
self.net = nn.Sequential(
|
||||
nn.Conv1d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, bias=bias),
|
||||
nn.BatchNorm1d(out_channels),
|
||||
self.act
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
return self.net(x)
|
||||
|
||||
|
||||
class ConvBNReLURes1D(nn.Module):
|
||||
def __init__(self, channel, kernel_size=1, groups=1, res_expansion=1.0, bias=True, activation='relu'):
|
||||
super(ConvBNReLURes1D, self).__init__()
|
||||
self.act = get_activation(activation)
|
||||
self.net1 = nn.Sequential(
|
||||
nn.Conv1d(in_channels=channel, out_channels=int(channel * res_expansion),
|
||||
kernel_size=kernel_size, groups=groups, bias=bias),
|
||||
nn.BatchNorm1d(int(channel * res_expansion)),
|
||||
self.act
|
||||
)
|
||||
self.net2 = nn.Sequential(
|
||||
nn.Conv1d(in_channels=int(channel * res_expansion), out_channels=channel,
|
||||
kernel_size=kernel_size, groups=groups, bias=bias),
|
||||
nn.BatchNorm1d(channel)
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
return self.act(self.net2(self.net1(x)) + x)
|
||||
|
||||
|
||||
class PreExtraction(nn.Module):
|
||||
def __init__(self, channels, out_channels, blocks=1, groups=1, res_expansion=1, bias=True,
|
||||
activation='relu', use_xyz=True):
|
||||
"""
|
||||
input: [b,g,k,d]: output:[b,d,g]
|
||||
:param channels:
|
||||
:param blocks:
|
||||
"""
|
||||
super(PreExtraction, self).__init__()
|
||||
in_channels = 3+2*channels if use_xyz else 2*channels
|
||||
self.transfer = ConvBNReLU1D(in_channels, out_channels, bias=bias, activation=activation)
|
||||
operation = []
|
||||
for _ in range(blocks):
|
||||
operation.append(
|
||||
ConvBNReLURes1D(out_channels, groups=groups, res_expansion=res_expansion,
|
||||
bias=bias, activation=activation)
|
||||
)
|
||||
self.operation = nn.Sequential(*operation)
|
||||
|
||||
def forward(self, x):
|
||||
b, n, s, d = x.size() # torch.Size([32, 512, 32, 6])
|
||||
x = x.permute(0, 1, 3, 2)
|
||||
x = x.reshape(-1, d, s)
|
||||
x = self.transfer(x)
|
||||
batch_size, _, _ = x.size()
|
||||
x = self.operation(x) # [b, d, k]
|
||||
x = F.adaptive_max_pool1d(x, 1).view(batch_size, -1)
|
||||
x = x.reshape(b, n, -1).permute(0, 2, 1)
|
||||
return x
|
||||
|
||||
|
||||
class PosExtraction(nn.Module):
|
||||
def __init__(self, channels, blocks=1, groups=1, res_expansion=1, bias=True, activation='relu'):
|
||||
"""
|
||||
input[b,d,g]; output[b,d,g]
|
||||
:param channels:
|
||||
:param blocks:
|
||||
"""
|
||||
super(PosExtraction, self).__init__()
|
||||
operation = []
|
||||
for _ in range(blocks):
|
||||
operation.append(
|
||||
ConvBNReLURes1D(channels, groups=groups, res_expansion=res_expansion, bias=bias, activation=activation)
|
||||
)
|
||||
self.operation = nn.Sequential(*operation)
|
||||
|
||||
def forward(self, x): # [b, d, g]
|
||||
return self.operation(x)
|
||||
|
||||
|
||||
class modelelite3(nn.Module):
|
||||
def __init__(self, points=1024, class_num=40, embed_dim=64, groups=1, res_expansion=1.0,
|
||||
activation="relu", bias=True, use_xyz=True, normalize="center",
|
||||
dim_expansion=[2, 2, 2, 2], pre_blocks=[2, 2, 2, 2], pos_blocks=[2, 2, 2, 2],
|
||||
k_neighbors=[32, 32, 32, 32], reducers=[2, 2, 2, 2], **kwargs):
|
||||
super(modelelite3, self).__init__()
|
||||
self.stages = len(pre_blocks)
|
||||
self.class_num = class_num
|
||||
self.points = points
|
||||
self.embedding = ConvBNReLU1D(3, embed_dim, bias=bias, activation=activation)
|
||||
assert len(pre_blocks) == len(k_neighbors) == len(reducers) == len(pos_blocks) == len(dim_expansion), \
|
||||
"Please check stage number consistent for pre_blocks, pos_blocks k_neighbors, reducers."
|
||||
self.local_grouper_list = nn.ModuleList()
|
||||
self.pre_blocks_list = nn.ModuleList()
|
||||
self.pos_blocks_list = nn.ModuleList()
|
||||
last_channel = embed_dim
|
||||
anchor_points = self.points
|
||||
for i in range(len(pre_blocks)):
|
||||
out_channel = last_channel * dim_expansion[i]
|
||||
pre_block_num = pre_blocks[i]
|
||||
pos_block_num = pos_blocks[i]
|
||||
kneighbor = k_neighbors[i]
|
||||
reduce = reducers[i]
|
||||
anchor_points = anchor_points // reduce
|
||||
# append local_grouper_list
|
||||
local_grouper = LocalGrouper(last_channel, anchor_points, kneighbor, use_xyz, normalize) # [b,g,k,d]
|
||||
self.local_grouper_list.append(local_grouper)
|
||||
# append pre_block_list
|
||||
pre_block_module = PreExtraction(last_channel, out_channel, pre_block_num, groups=groups,
|
||||
res_expansion=res_expansion,
|
||||
bias=bias, activation=activation, use_xyz=use_xyz)
|
||||
self.pre_blocks_list.append(pre_block_module)
|
||||
# append pos_block_list
|
||||
pos_block_module = PosExtraction(out_channel, pos_block_num, groups=groups,
|
||||
res_expansion=res_expansion, bias=bias, activation=activation)
|
||||
self.pos_blocks_list.append(pos_block_module)
|
||||
|
||||
last_channel = out_channel
|
||||
|
||||
self.act = get_activation(activation)
|
||||
self.classifier = nn.Sequential(
|
||||
nn.Linear(last_channel, 512),
|
||||
nn.BatchNorm1d(512),
|
||||
self.act,
|
||||
nn.Dropout(0.5),
|
||||
nn.Linear(512, 256),
|
||||
nn.BatchNorm1d(256),
|
||||
self.act,
|
||||
nn.Dropout(0.5),
|
||||
nn.Linear(256, self.class_num)
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
xyz = x.permute(0, 2, 1)
|
||||
batch_size, _, _ = x.size()
|
||||
x = self.embedding(x) # B,D,N
|
||||
for i in range(self.stages):
|
||||
# Give xyz[b, p, 3] and fea[b, p, d], return new_xyz[b, g, 3] and new_fea[b, g, k, d]
|
||||
xyz, x = self.local_grouper_list[i](xyz, x.permute(0, 2, 1)) # [b,g,3] [b,g,k,d]
|
||||
x = self.pre_blocks_list[i](x) # [b,d,g]
|
||||
x = self.pos_blocks_list[i](x) # [b,d,g]
|
||||
|
||||
x = F.adaptive_max_pool1d(x, 1).squeeze(dim=-1)
|
||||
x = self.classifier(x)
|
||||
return x
|
||||
|
||||
|
||||
|
||||
def modelelite3A1(num_classes=40, **kwargs) -> modelelite3: # 3.48M
|
||||
return modelelite3(points=1024, class_num=num_classes, embed_dim=64, groups=1, res_expansion=0.125,
|
||||
activation="relu", bias=False, use_xyz=False, normalize="anchor",
|
||||
dim_expansion=[2, 2, 2, 2], pre_blocks=[2, 2, 2, 2], pos_blocks=[2, 2, 2, 2],
|
||||
k_neighbors=[24, 24, 24, 24], reducers=[2, 2, 2, 2], **kwargs)
|
||||
|
||||
|
||||
def modelelite3B1(num_classes=40, **kwargs) -> modelelite3: # 2.78M
|
||||
return modelelite3(points=1024, class_num=num_classes, embed_dim=64, groups=1, res_expansion=0.0625,
|
||||
activation="relu", bias=False, use_xyz=False, normalize="anchor",
|
||||
dim_expansion=[2, 2, 2, 2], pre_blocks=[2, 2, 2, 2], pos_blocks=[2, 2, 2, 2],
|
||||
k_neighbors=[24, 24, 24, 24], reducers=[2, 2, 2, 2], **kwargs)
|
||||
|
||||
|
||||
def modelelite3C1(num_classes=40, **kwargs) -> modelelite3: # 4.87M
|
||||
return modelelite3(points=1024, class_num=num_classes, embed_dim=64, groups=1, res_expansion=0.25,
|
||||
activation="relu", bias=False, use_xyz=False, normalize="anchor",
|
||||
dim_expansion=[2, 2, 2, 2], pre_blocks=[2, 2, 2, 2], pos_blocks=[2, 2, 2, 2],
|
||||
k_neighbors=[24, 24, 24, 24], reducers=[2, 2, 2, 2], **kwargs)
|
||||
|
||||
|
||||
def modelelite3D1(num_classes=40, **kwargs) -> modelelite3: # 2.26M
|
||||
return modelelite3(points=1024, class_num=num_classes, embed_dim=64, groups=8, res_expansion=0.125,
|
||||
activation="relu", bias=False, use_xyz=False, normalize="anchor",
|
||||
dim_expansion=[2, 2, 2, 2], pre_blocks=[2, 2, 2, 2], pos_blocks=[2, 2, 2, 2],
|
||||
k_neighbors=[24, 24, 24, 24], reducers=[2, 2, 2, 2], **kwargs)
|
||||
|
||||
|
||||
def modelelite3E1(num_classes=40, **kwargs) -> modelelite3: # 2.43M
|
||||
return modelelite3(points=1024, class_num=num_classes, embed_dim=64, groups=4, res_expansion=0.125,
|
||||
activation="relu", bias=False, use_xyz=False, normalize="anchor",
|
||||
dim_expansion=[2, 2, 2, 2], pre_blocks=[2, 2, 2, 2], pos_blocks=[2, 2, 2, 2],
|
||||
k_neighbors=[24, 24, 24, 24], reducers=[2, 2, 2, 2], **kwargs)
|
||||
|
||||
|
||||
def modelelite3F1(num_classes=40, **kwargs) -> modelelite3: # 0.85M
|
||||
return modelelite3(points=1024, class_num=num_classes, embed_dim=32, groups=4, res_expansion=0.125,
|
||||
activation="relu", bias=False, use_xyz=False, normalize="anchor",
|
||||
dim_expansion=[2, 2, 2, 2], pre_blocks=[2, 2, 2, 2], pos_blocks=[2, 2, 2, 2],
|
||||
k_neighbors=[24, 24, 24, 24], reducers=[2, 2, 2, 2], **kwargs)
|
||||
|
||||
|
||||
def modelelite3G1(num_classes=40, **kwargs) -> modelelite3: # 0.85M
|
||||
return modelelite3(points=1024, class_num=num_classes, embed_dim=32, groups=4, res_expansion=0.125,
|
||||
activation="relu", bias=False, use_xyz=False, normalize="anchor",
|
||||
dim_expansion=[2, 2, 2, 2], pre_blocks=[2, 2, 2, 2], pos_blocks=[2, 2, 2, 2],
|
||||
k_neighbors=[24, 24, 24, 24], reducers=[2, 2, 2, 2], **kwargs)
|
||||
|
||||
|
||||
def modelelite3H1(num_classes=40, **kwargs) -> modelelite3: # 3.56M
|
||||
return modelelite3(points=1024, class_num=num_classes, embed_dim=32, groups=1, res_expansion=1,
|
||||
activation="relu", bias=False, use_xyz=False, normalize="anchor",
|
||||
dim_expansion=[2, 2, 2, 2], pre_blocks=[2, 2, 2, 2], pos_blocks=[2, 2, 2, 2],
|
||||
k_neighbors=[24, 24, 24, 24], reducers=[2, 2, 2, 2], **kwargs)
|
||||
|
||||
|
||||
def modelelite3I1(num_classes=40, **kwargs) -> modelelite3: # 0.90M
|
||||
return modelelite3(points=1024, class_num=num_classes, embed_dim=32, groups=4, res_expansion=0.125,
|
||||
activation="relu", bias=False, use_xyz=False, normalize="anchor",
|
||||
dim_expansion=[2, 2, 2, 2], pre_blocks=[3, 3, 3, 3], pos_blocks=[3, 3, 3, 3],
|
||||
k_neighbors=[24, 24, 24, 24], reducers=[2, 2, 2, 2], **kwargs)
|
||||
|
||||
|
||||
def modelelite3J1(num_classes=40, **kwargs) -> modelelite3: # 0.93M
|
||||
return modelelite3(points=1024, class_num=num_classes, embed_dim=32, groups=4, res_expansion=0.125,
|
||||
activation="relu", bias=False, use_xyz=False, normalize="anchor",
|
||||
dim_expansion=[2, 2, 2, 2], pre_blocks=[3, 4, 6, 3], pos_blocks=[3, 4, 6, 3],
|
||||
k_neighbors=[24, 24, 24, 24], reducers=[2, 2, 2, 2], **kwargs)
|
||||
|
||||
|
||||
def modelelite3K1(num_classes=40, **kwargs) -> modelelite3: # 0.93M
|
||||
return modelelite3(points=1024, class_num=num_classes, embed_dim=32, groups=8, res_expansion=0.25,
|
||||
activation="relu", bias=False, use_xyz=False, normalize="anchor",
|
||||
dim_expansion=[2, 2, 2, 2], pre_blocks=[3, 4, 6, 3], pos_blocks=[3, 4, 6, 3],
|
||||
k_neighbors=[24, 24, 24, 24], reducers=[2, 2, 2, 2], **kwargs)
|
||||
|
||||
|
||||
def modelelite3L1(num_classes=40, **kwargs) -> modelelite3: # 0.95M
|
||||
return modelelite3(points=1024, class_num=num_classes, embed_dim=32, groups=8, res_expansion=0.25,
|
||||
activation="relu", bias=True, use_xyz=True, normalize="anchor",
|
||||
dim_expansion=[2, 2, 2, 2], pre_blocks=[3, 4, 6, 3], pos_blocks=[3, 4, 6, 3],
|
||||
k_neighbors=[24, 24, 24, 24], reducers=[2, 2, 2, 2], **kwargs)
|
||||
|
||||
|
||||
########version 2: 64 neighbors with 0.5 drop ratio ###########
|
||||
def modelelite3A2(num_classes=40, **kwargs) -> modelelite3: # 3.48M
|
||||
return modelelite3(points=1024, class_num=num_classes, embed_dim=64, groups=1, res_expansion=0.125,
|
||||
activation="relu", bias=False, use_xyz=False, normalize="anchor",
|
||||
dim_expansion=[2, 2, 2, 2], pre_blocks=[2, 2, 2, 2], pos_blocks=[2, 2, 2, 2],
|
||||
k_neighbors=[32, 32, 32, 32], reducers=[2, 2, 2, 2], **kwargs)
|
||||
|
||||
|
||||
def modelelite3B2(num_classes=40, **kwargs) -> modelelite3: # 2.78M
|
||||
return modelelite3(points=1024, class_num=num_classes, embed_dim=64, groups=1, res_expansion=0.0625,
|
||||
activation="relu", bias=False, use_xyz=False, normalize="anchor",
|
||||
dim_expansion=[2, 2, 2, 2], pre_blocks=[2, 2, 2, 2], pos_blocks=[2, 2, 2, 2],
|
||||
k_neighbors=[32, 32, 32, 32], reducers=[2, 2, 2, 2], **kwargs)
|
||||
|
||||
|
||||
def modelelite3C2(num_classes=40, **kwargs) -> modelelite3: # 4.87M
|
||||
return modelelite3(points=1024, class_num=num_classes, embed_dim=64, groups=1, res_expansion=0.25,
|
||||
activation="relu", bias=False, use_xyz=False, normalize="anchor",
|
||||
dim_expansion=[2, 2, 2, 2], pre_blocks=[2, 2, 2, 2], pos_blocks=[2, 2, 2, 2],
|
||||
k_neighbors=[32, 32, 32, 32], reducers=[2, 2, 2, 2], **kwargs)
|
||||
|
||||
|
||||
def modelelite3D2(num_classes=40, **kwargs) -> modelelite3: # 2.26M
|
||||
return modelelite3(points=1024, class_num=num_classes, embed_dim=64, groups=8, res_expansion=0.125,
|
||||
activation="relu", bias=False, use_xyz=False, normalize="anchor",
|
||||
dim_expansion=[2, 2, 2, 2], pre_blocks=[2, 2, 2, 2], pos_blocks=[2, 2, 2, 2],
|
||||
k_neighbors=[32, 32, 32, 32], reducers=[2, 2, 2, 2], **kwargs)
|
||||
|
||||
|
||||
def modelelite3E2(num_classes=40, **kwargs) -> modelelite3: # 2.43M
|
||||
return modelelite3(points=1024, class_num=num_classes, embed_dim=64, groups=4, res_expansion=0.125,
|
||||
activation="relu", bias=False, use_xyz=False, normalize="anchor",
|
||||
dim_expansion=[2, 2, 2, 2], pre_blocks=[2, 2, 2, 2], pos_blocks=[2, 2, 2, 2],
|
||||
k_neighbors=[32, 32, 32, 32], reducers=[2, 2, 2, 2], **kwargs)
|
||||
|
||||
|
||||
def modelelite3F2(num_classes=40, **kwargs) -> modelelite3: # 0.85M
|
||||
return modelelite3(points=1024, class_num=num_classes, embed_dim=32, groups=4, res_expansion=0.125,
|
||||
activation="relu", bias=False, use_xyz=False, normalize="anchor",
|
||||
dim_expansion=[2, 2, 2, 2], pre_blocks=[2, 2, 2, 2], pos_blocks=[2, 2, 2, 2],
|
||||
k_neighbors=[32, 32, 32, 32], reducers=[2, 2, 2, 2], **kwargs)
|
||||
|
||||
|
||||
def modelelite3G2(num_classes=40, **kwargs) -> modelelite3: # 0.85M
|
||||
return modelelite3(points=1024, class_num=num_classes, embed_dim=32, groups=4, res_expansion=0.125,
|
||||
activation="relu", bias=False, use_xyz=False, normalize="anchor",
|
||||
dim_expansion=[2, 2, 2, 2], pre_blocks=[2, 2, 2, 2], pos_blocks=[2, 2, 2, 2],
|
||||
k_neighbors=[32, 32, 32, 32], reducers=[2, 2, 2, 2], **kwargs)
|
||||
|
||||
|
||||
def modelelite3H2(num_classes=40, **kwargs) -> modelelite3: # 3.56M
|
||||
return modelelite3(points=1024, class_num=num_classes, embed_dim=32, groups=1, res_expansion=1,
|
||||
activation="relu", bias=False, use_xyz=False, normalize="anchor",
|
||||
dim_expansion=[2, 2, 2, 2], pre_blocks=[2, 2, 2, 2], pos_blocks=[2, 2, 2, 2],
|
||||
k_neighbors=[32, 32, 32, 32], reducers=[2, 2, 2, 2], **kwargs)
|
||||
|
||||
|
||||
def modelelite3I2(num_classes=40, **kwargs) -> modelelite3: # 0.90M
|
||||
return modelelite3(points=1024, class_num=num_classes, embed_dim=32, groups=4, res_expansion=0.125,
|
||||
activation="relu", bias=False, use_xyz=False, normalize="anchor",
|
||||
dim_expansion=[2, 2, 2, 2], pre_blocks=[3, 3, 3, 3], pos_blocks=[3, 3, 3, 3],
|
||||
k_neighbors=[32, 32, 32, 32], reducers=[2, 2, 2, 2], **kwargs)
|
||||
|
||||
|
||||
def modelelite3J2(num_classes=40, **kwargs) -> modelelite3: # 0.93M
|
||||
return modelelite3(points=1024, class_num=num_classes, embed_dim=32, groups=4, res_expansion=0.125,
|
||||
activation="relu", bias=False, use_xyz=False, normalize="anchor",
|
||||
dim_expansion=[2, 2, 2, 2], pre_blocks=[3, 4, 6, 3], pos_blocks=[3, 4, 6, 3],
|
||||
k_neighbors=[32, 32, 32, 32], reducers=[2, 2, 2, 2], **kwargs)
|
||||
|
||||
|
||||
def modelelite3K2(num_classes=40, **kwargs) -> modelelite3: # 0.93M
|
||||
return modelelite3(points=1024, class_num=num_classes, embed_dim=32, groups=8, res_expansion=0.25,
|
||||
activation="relu", bias=False, use_xyz=False, normalize="anchor",
|
||||
dim_expansion=[2, 2, 2, 2], pre_blocks=[3, 4, 6, 3], pos_blocks=[3, 4, 6, 3],
|
||||
k_neighbors=[32, 32, 32, 32], reducers=[2, 2, 2, 2], **kwargs)
|
||||
|
||||
|
||||
def modelelite3L2(num_classes=40, **kwargs) -> modelelite3: # 0.95M
|
||||
return modelelite3(points=1024, class_num=num_classes, embed_dim=32, groups=8, res_expansion=0.25,
|
||||
activation="relu", bias=True, use_xyz=True, normalize="anchor",
|
||||
dim_expansion=[2, 2, 2, 2], pre_blocks=[3, 4, 6, 3], pos_blocks=[3, 4, 6, 3],
|
||||
k_neighbors=[32, 32, 32, 32], reducers=[2, 2, 2, 2], **kwargs)
|
||||
|
||||
|
||||
|
||||
|
||||
def modelelite3X1(num_classes=40, **kwargs) -> modelelite3: # 1.11M 1m47s/16s
|
||||
return modelelite3(points=1024, class_num=num_classes, embed_dim=32, groups=1, res_expansion=0.125,
|
||||
activation="relu", bias=False, use_xyz=False, normalize="anchor",
|
||||
dim_expansion=[2, 2, 2, 2], pre_blocks=[2, 2, 2, 2], pos_blocks=[2, 2, 2, 2],
|
||||
k_neighbors=[20, 20, 20, 20], reducers=[2, 2, 2, 2], **kwargs)
|
||||
|
||||
def modelelite3X2(num_classes=40, **kwargs) -> modelelite3: # 0.94M 121/18s
|
||||
return modelelite3(points=1024, class_num=num_classes, embed_dim=32, groups=2, res_expansion=0.125,
|
||||
activation="relu", bias=False, use_xyz=False, normalize="anchor",
|
||||
dim_expansion=[2, 2, 2, 2], pre_blocks=[2, 2, 2, 2], pos_blocks=[2, 2, 2, 2],
|
||||
k_neighbors=[20, 20, 20, 20], reducers=[2, 2, 2, 2], **kwargs)
|
||||
|
||||
def modelelite3X3(num_classes=40, **kwargs) -> modelelite3: # 0.94 87/14s
|
||||
return modelelite3(points=1024, class_num=num_classes, embed_dim=32, groups=1, res_expansion=0.125,
|
||||
activation="relu", bias=False, use_xyz=False, normalize="anchor",
|
||||
dim_expansion=[2, 2, 2, 2], pre_blocks=[1, 1, 1, 1], pos_blocks=[1, 1, 1, 1],
|
||||
k_neighbors=[20, 20, 20, 20], reducers=[2, 2, 2, 2], **kwargs)
|
||||
|
||||
def modelelite3X4(num_classes=40, **kwargs) -> modelelite3: # 2.77 107s/17s
|
||||
return modelelite3(points=1024, class_num=num_classes, embed_dim=64, groups=1, res_expansion=0.125,
|
||||
activation="relu", bias=False, use_xyz=False, normalize="anchor",
|
||||
dim_expansion=[2, 2, 2, 2], pre_blocks=[1, 1, 1, 1], pos_blocks=[1, 1, 1, 1],
|
||||
k_neighbors=[20, 20, 20, 20], reducers=[2, 2, 2, 2], **kwargs)
|
||||
|
||||
def modelelite3X5(num_classes=40, **kwargs) -> modelelite3: # 1.59
|
||||
return modelelite3(points=1024, class_num=num_classes, embed_dim=64, groups=1, res_expansion=0.125,
|
||||
activation="relu", bias=False, use_xyz=False, normalize="anchor",
|
||||
dim_expansion=[2, 2, 2, 1], pre_blocks=[1, 1, 1, 1], pos_blocks=[1, 1, 1, 1],
|
||||
k_neighbors=[20, 20, 20, 20], reducers=[2, 2, 2, 2], **kwargs)
|
||||
|
||||
def modelelite3X6(num_classes=40, **kwargs) -> modelelite3: # 1.44
|
||||
return modelelite3(points=1024, class_num=num_classes, embed_dim=64, groups=4, res_expansion=0.25,
|
||||
activation="relu", bias=False, use_xyz=False, normalize="anchor",
|
||||
dim_expansion=[2, 2, 2, 1], pre_blocks=[1, 1, 1, 1], pos_blocks=[1, 1, 1, 1],
|
||||
k_neighbors=[20, 20, 20, 20], reducers=[2, 2, 2, 2], **kwargs)
|
||||
|
||||
def modelelite3X7(num_classes=40, **kwargs) -> modelelite3: # 1.11M
|
||||
return modelelite3(points=1024, class_num=num_classes, embed_dim=32, groups=1, res_expansion=0.125,
|
||||
activation="relu", bias=False, use_xyz=False, normalize="anchor",
|
||||
dim_expansion=[2, 2, 2, 2], pre_blocks=[2, 2, 2, 2], pos_blocks=[2, 2, 2, 2],
|
||||
k_neighbors=[24,24,24,24], reducers=[2, 2, 2, 2], **kwargs)
|
||||
|
||||
def modelelite3X8(num_classes=40, **kwargs) -> modelelite3: # 0.95M
|
||||
return modelelite3(points=1024, class_num=num_classes, embed_dim=32, groups=1, res_expansion=0.125,
|
||||
activation="relu", bias=False, use_xyz=False, normalize="anchor",
|
||||
dim_expansion=[2, 2, 2, 2], pre_blocks=[1, 1, 2, 1], pos_blocks=[1, 1, 1, 1],
|
||||
k_neighbors=[24,24,24,24], reducers=[2, 2, 2, 2], **kwargs)
|
||||
|
||||
def modelelite3X9(num_classes=40, **kwargs) -> modelelite3: # 1.59M
|
||||
return modelelite3(points=1024, class_num=num_classes, embed_dim=64, groups=1, res_expansion=0.125,
|
||||
activation="relu", bias=False, use_xyz=False, normalize="anchor",
|
||||
dim_expansion=[2, 2, 2, 1], pre_blocks=[1, 1, 1, 1], pos_blocks=[1, 1, 1, 1],
|
||||
k_neighbors=[24,24,24,24], reducers=[2, 2, 2, 2], **kwargs)
|
||||
|
||||
def modelelite3X10(num_classes=40, **kwargs) -> modelelite3: # 0.72M
|
||||
return modelelite3(points=1024, class_num=num_classes, embed_dim=32, groups=1, res_expansion=0.25,
|
||||
activation="relu", bias=False, use_xyz=False, normalize="anchor",
|
||||
dim_expansion=[2, 2, 2, 1], pre_blocks=[1, 1, 2, 1], pos_blocks=[1, 1, 2, 1],
|
||||
k_neighbors=[24,24,24,24], reducers=[2, 2, 2, 2], **kwargs)
|
||||
|
||||
def modelelite3X11(num_classes=40, **kwargs) -> modelelite3: # 0.98M 79/13s
|
||||
return modelelite3(points=1024, class_num=num_classes, embed_dim=64, groups=1, res_expansion=0.25,
|
||||
activation="relu", bias=False, use_xyz=False, normalize="anchor",
|
||||
dim_expansion=[1, 2, 2, 2], pre_blocks=[1, 1, 1, 1], pos_blocks=[1, 1, 1, 0],
|
||||
k_neighbors=[20, 20, 20, 20], reducers=[2, 2, 2, 2], **kwargs)
|
||||
|
||||
def modelelite3X12(num_classes=40, **kwargs) -> modelelite3: # 0.98M 78/13s
|
||||
return modelelite3(points=1024, class_num=num_classes, embed_dim=64, groups=1, res_expansion=0.25,
|
||||
activation="relu", bias=False, use_xyz=False, normalize="anchor",
|
||||
dim_expansion=[1, 2, 2, 2], pre_blocks=[1, 1, 1, 1], pos_blocks=[1, 1, 1, 0],
|
||||
k_neighbors=[24,24,24,24], reducers=[2, 2, 2, 2], **kwargs)
|
||||
|
||||
def modelelite3X13(num_classes=40, **kwargs) -> modelelite3: # 0.94M 90/15s
|
||||
return modelelite3(points=1024, class_num=num_classes, embed_dim=64, groups=1, res_expansion=0.125,
|
||||
activation="relu", bias=False, use_xyz=False, normalize="anchor",
|
||||
dim_expansion=[1, 2, 2, 2], pre_blocks=[1, 2, 2, 2], pos_blocks=[1, 1, 0, 0],
|
||||
k_neighbors=[24,24,24,24], reducers=[2, 2, 2, 2], **kwargs)
|
||||
|
||||
if __name__ == '__main__':
|
||||
# data = torch.rand(2, 128, 10)
|
||||
# model = ConvBNReLURes1D(128, groups=2, activation='relu')
|
||||
# out = model(data)
|
||||
# print(out.shape)
|
||||
#
|
||||
# batch, groups, neighbors, dim = 2, 512, 32, 16
|
||||
# x = torch.rand(batch, groups, neighbors, dim)
|
||||
# pre_extractor = PreExtraction(dim, 3)
|
||||
# out = pre_extractor(x)
|
||||
# print(out.shape)
|
||||
#
|
||||
# x = torch.rand(batch, dim, groups)
|
||||
# pos_extractor = PosExtraction(dim, 3)
|
||||
# out = pos_extractor(x)
|
||||
# print(out.shape)
|
||||
|
||||
data = torch.rand(2, 3, 1024)
|
||||
|
||||
print("===> testing modelN ...")
|
||||
model = modelelite3A1()
|
||||
out = model(data)
|
||||
print(out.shape)
|
|
@ -1,18 +1,4 @@
|
|||
"""
|
||||
Based on model30, change the grouper operation by normalization.
|
||||
Based on model28, only change configurations, mainly the reducer.
|
||||
Based on model27, change to x-a, reorgnized structure
|
||||
Based on model25, simple LocalGrouper (not x-a), reorgnized structure
|
||||
Based on model24, using ReLU to replace GELU
|
||||
Based on model22, remove attention
|
||||
Bsed on model21, change FPS to random sampling.
|
||||
Exactly based on Model10, but ReLU to GeLU
|
||||
Based on Model8, add dropout and max, avg combine.
|
||||
Based on Local model, add residual connections.
|
||||
The extraction is doubled for depth.
|
||||
Learning Point Cloud with Progressively Local representation.
|
||||
[B,3,N] - {[B,G,K,d]-[B,G,d]} - {[B,G',K,d]-[B,G',d]} -cls
|
||||
"""
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
@ -291,12 +277,12 @@ class PosExtraction(nn.Module):
|
|||
return self.operation(x)
|
||||
|
||||
|
||||
class model31(nn.Module):
|
||||
class Model(nn.Module):
|
||||
def __init__(self, points=1024, class_num=40, embed_dim=64, groups=1, res_expansion=1.0,
|
||||
activation="relu", bias=True, use_xyz=True, normalize="center",
|
||||
dim_expansion=[2, 2, 2, 2], pre_blocks=[2, 2, 2, 2], pos_blocks=[2, 2, 2, 2],
|
||||
k_neighbors=[32, 32, 32, 32], reducers=[2, 2, 2, 2], **kwargs):
|
||||
super(model31, self).__init__()
|
||||
super(Model, self).__init__()
|
||||
self.stages = len(pre_blocks)
|
||||
self.class_num = class_num
|
||||
self.points = points
|
||||
|
@ -359,130 +345,24 @@ class model31(nn.Module):
|
|||
|
||||
|
||||
|
||||
def model31A(num_classes=40, **kwargs) -> model31:
|
||||
return model31(points=1024, class_num=num_classes, embed_dim=64, groups=1, res_expansion=1.0,
|
||||
activation="relu", bias=False, use_xyz=False, normalize="anchor",
|
||||
dim_expansion=[2, 2, 2, 2], pre_blocks=[2, 2, 2, 2], pos_blocks=[2, 2, 2, 2],
|
||||
k_neighbors=[32, 32, 32, 32], reducers=[2, 2, 2, 2], **kwargs)
|
||||
|
||||
def model31B(num_classes=40, **kwargs) -> model31:
|
||||
return model31(points=1024, class_num=num_classes, embed_dim=64, groups=1, res_expansion=1.0,
|
||||
activation="relu", bias=False, use_xyz=False, normalize="center",
|
||||
dim_expansion=[2, 2, 2, 2], pre_blocks=[2, 2, 2, 2], pos_blocks=[2, 2, 2, 2],
|
||||
k_neighbors=[32, 32, 32, 32], reducers=[2, 2, 2, 2], **kwargs)
|
||||
|
||||
|
||||
def model31C(num_classes=40, **kwargs) -> model31:
|
||||
return model31(points=1024, class_num=num_classes, embed_dim=64, groups=1, res_expansion=1.0,
|
||||
def pointMLP(num_classes=40, **kwargs) -> Model:
|
||||
return Model(points=1024, class_num=num_classes, embed_dim=64, groups=1, res_expansion=1.0,
|
||||
activation="relu", bias=False, use_xyz=False, normalize="anchor",
|
||||
dim_expansion=[2, 2, 2, 2], pre_blocks=[2, 2, 2, 2], pos_blocks=[2, 2, 2, 2],
|
||||
k_neighbors=[24, 24, 24, 24], reducers=[2, 2, 2, 2], **kwargs)
|
||||
|
||||
def model31D(num_classes=40, **kwargs) -> model31:
|
||||
return model31(points=1024, class_num=num_classes, embed_dim=64, groups=1, res_expansion=1.0,
|
||||
|
||||
def pointMLPElite(num_classes=40, **kwargs) -> Model:
|
||||
return Model(points=1024, class_num=num_classes, embed_dim=32, groups=1, res_expansion=0.25,
|
||||
activation="relu", bias=False, use_xyz=False, normalize="anchor",
|
||||
dim_expansion=[2, 2, 2, 2], pre_blocks=[2, 2, 2, 2], pos_blocks=[2, 2, 2, 2],
|
||||
k_neighbors=[20, 20, 20, 20], reducers=[2, 2, 2, 2], **kwargs)
|
||||
|
||||
|
||||
def model31E(num_classes=40, **kwargs) -> model31:
|
||||
return model31(points=1024, class_num=num_classes, embed_dim=32, groups=1, res_expansion=1.0,
|
||||
activation="relu", bias=False, use_xyz=False, normalize="anchor",
|
||||
dim_expansion=[2, 2, 2, 2], pre_blocks=[2, 2, 2, 2], pos_blocks=[2, 2, 2, 2],
|
||||
k_neighbors=[32, 32, 32, 32], reducers=[2, 2, 2, 2], **kwargs)
|
||||
|
||||
|
||||
def model31F(num_classes=40, **kwargs) -> model31:
|
||||
return model31(points=1024, class_num=num_classes, embed_dim=64, groups=1, res_expansion=0.125,
|
||||
activation="relu", bias=False, use_xyz=False, normalize="anchor",
|
||||
dim_expansion=[2, 2, 2, 2], pre_blocks=[2, 2, 2, 2], pos_blocks=[2, 2, 2, 2],
|
||||
k_neighbors=[32, 32, 32, 32], reducers=[2, 2, 2, 2], **kwargs)
|
||||
|
||||
|
||||
def model31G(num_classes=40, **kwargs) -> model31:
|
||||
return model31(points=1024, class_num=num_classes, embed_dim=64, groups=16, res_expansion=2.0,
|
||||
activation="relu", bias=False, use_xyz=False, normalize="anchor",
|
||||
dim_expansion=[2, 2, 2, 2], pre_blocks=[2, 2, 2, 2], pos_blocks=[2, 2, 2, 2],
|
||||
k_neighbors=[32, 32, 32, 32], reducers=[2, 2, 2, 2], **kwargs)
|
||||
|
||||
def model31H(num_classes=40, **kwargs) -> model31:
|
||||
return model31(points=1024, class_num=num_classes, embed_dim=128, groups=1, res_expansion=1,
|
||||
activation="relu", bias=False, use_xyz=False, normalize="anchor",
|
||||
dim_expansion=[2, 2], pre_blocks=[4, 4], pos_blocks=[4, 4],
|
||||
k_neighbors=[32, 32], reducers=[4, 4], **kwargs)
|
||||
|
||||
def model31I(num_classes=40, **kwargs) -> model31:
|
||||
return model31(points=1024, class_num=num_classes, embed_dim=128, groups=1, res_expansion=1,
|
||||
activation="gelu", bias=False, use_xyz=False, normalize="anchor",
|
||||
dim_expansion=[2, 2], pre_blocks=[4, 4], pos_blocks=[4, 4],
|
||||
k_neighbors=[32, 32], reducers=[4, 4], **kwargs)
|
||||
|
||||
def model31J(num_classes=40, **kwargs) -> model31:
|
||||
return model31(points=1024, class_num=num_classes, embed_dim=128, groups=1, res_expansion=1,
|
||||
activation="relu", bias=False, use_xyz=False, normalize="anchor",
|
||||
dim_expansion=[2, 2], pre_blocks=[4, 4], pos_blocks=[4, 4],
|
||||
k_neighbors=[24, 24], reducers=[4, 4], **kwargs)
|
||||
|
||||
def model31K(num_classes=40, **kwargs) -> model31:
|
||||
return model31(points=1024, class_num=num_classes, embed_dim=384, groups=1, res_expansion=1,
|
||||
activation="relu", bias=False, use_xyz=False, normalize="anchor",
|
||||
dim_expansion=[1, 1], pre_blocks=[4, 4], pos_blocks=[4, 4],
|
||||
k_neighbors=[32, 32], reducers=[4, 4], **kwargs)
|
||||
|
||||
def model31L(num_classes=40, **kwargs) -> model31:
|
||||
return model31(points=1024, class_num=num_classes, embed_dim=128, groups=1, res_expansion=1,
|
||||
activation="relu", bias=False, use_xyz=False, normalize="anchor",
|
||||
dim_expansion=[2, 2, 2], pre_blocks=[3, 3, 3], pos_blocks=[3, 3, 3],
|
||||
k_neighbors=[24, 24, 24], reducers=[4, 4, 2], **kwargs)
|
||||
|
||||
def model31M(num_classes=40, **kwargs) -> model31:
|
||||
return model31(points=1024, class_num=num_classes, embed_dim=128, groups=1, res_expansion=1,
|
||||
activation="leakyrelu", bias=False, use_xyz=False, normalize="anchor",
|
||||
dim_expansion=[2, 2], pre_blocks=[4, 4], pos_blocks=[4, 4],
|
||||
k_neighbors=[32, 32], reducers=[4, 4], **kwargs)
|
||||
|
||||
def model31N(num_classes=40, **kwargs) -> model31:
|
||||
return model31(points=1024, class_num=num_classes, embed_dim=32, groups=1, res_expansion=1.0,
|
||||
activation="relu", bias=False, use_xyz=False, normalize="anchor",
|
||||
dim_expansion=[2, 2, 2, 2], pre_blocks=[4, 8, 4, 2], pos_blocks=[4, 8, 4, 2],
|
||||
k_neighbors=[32, 32, 32, 32], reducers=[2, 2, 2, 2], **kwargs)
|
||||
|
||||
dim_expansion=[2, 2, 2, 1], pre_blocks=[1, 1, 2, 1], pos_blocks=[1, 1, 2, 1],
|
||||
k_neighbors=[24,24,24,24], reducers=[2, 2, 2, 2], **kwargs)
|
||||
|
||||
if __name__ == '__main__':
|
||||
# data = torch.rand(2, 128, 10)
|
||||
# model = ConvBNReLURes1D(128, groups=2, activation='relu')
|
||||
# out = model(data)
|
||||
# print(out.shape)
|
||||
#
|
||||
# batch, groups, neighbors, dim = 2, 512, 32, 16
|
||||
# x = torch.rand(batch, groups, neighbors, dim)
|
||||
# pre_extractor = PreExtraction(dim, 3)
|
||||
# out = pre_extractor(x)
|
||||
# print(out.shape)
|
||||
#
|
||||
# x = torch.rand(batch, dim, groups)
|
||||
# pos_extractor = PosExtraction(dim, 3)
|
||||
# out = pos_extractor(x)
|
||||
# print(out.shape)
|
||||
|
||||
data = torch.rand(2, 3, 1024)
|
||||
|
||||
print("===> testing modelK ...")
|
||||
model = model31K()
|
||||
print("===> testing pointMLP ...")
|
||||
model = pointMLP()
|
||||
out = model(data)
|
||||
print(out.shape)
|
||||
|
||||
print("===> testing modelL ...")
|
||||
model = model31L()
|
||||
out = model(data)
|
||||
print(out.shape)
|
||||
|
||||
print("===> testing modelM ...")
|
||||
model = model31M()
|
||||
out = model(data)
|
||||
print(out.shape)
|
||||
|
||||
print("===> testing modelN ...")
|
||||
model = model31N()
|
||||
out = model(data)
|
||||
print(out.shape)
|
|
@ -1,31 +1,3 @@
|
|||
from __future__ import absolute_import
|
||||
from .pointnet import PointNet
|
||||
from .model21 import model21H
|
||||
from .model1 import model1A, model1B, model1C, model1D, model1E, model1F
|
||||
from .model2 import model2A1,model2A2, model2A3, model2A4, model2A5, model2A6, \
|
||||
model2A7, model2A8, model2A9, model2A10, model2A11, model2A12
|
||||
from .model3 import model3A1, model3A2, model3A3, model3A4, model3A5, model3A6, \
|
||||
model3A7, model3A8, model3A9, model3A10, model3A11, model3A12
|
||||
from .model4 import model4A1, model4A2, model4A3, model4A4, model4A5, model4A6, model4A7, model4A8
|
||||
from .model22 import model22H
|
||||
from .model23 import model23H
|
||||
from .model24 import model24H
|
||||
from .model25 import model25A, model25B, model25C, model25D, model25E, model25F, model25G, model25H, model25I, \
|
||||
model25J, model25H1, model25H2, model25H3,model25H4, model25H5, model25H6, model25H7, model25H8
|
||||
from .model26 import model26H, model26G
|
||||
|
||||
from .model27 import model27A, model27B, model27C, model27D, model27E, model27F, model27G, model27H, model27I, model27J
|
||||
from .model28 import model28A, model28B, model28C, model28D, model28E, model28F, model28G, model28H, model28I, model28J
|
||||
from .model29 import model29A, model29B, model29C, model29D, model29E, model29F, model29G, model29H, model29I, model29J
|
||||
from .model30 import model30A, model30B, model30C, model30D, model30E, model30F, model30G, model30H, model30I, model30J
|
||||
from .model31 import model31A, model31B, model31C, model31D, model31E, model31F, model31G, \
|
||||
model31Ablation1111, model31Ablation1111NOnorm, model31Ablation3333, model31Ablation3333NOnorm, \
|
||||
model31AblationNopre, model31AblationNopos, model31Ablation2222NOnorm
|
||||
from .model32 import model32A, model32B, model32C, model32D
|
||||
|
||||
from .modelelite3 import modelelite3A1, modelelite3A2, modelelite3B1, modelelite3B2, modelelite3C1, modelelite3C2, \
|
||||
modelelite3D1, modelelite3D2, modelelite3E1, modelelite3E2, modelelite3F1, modelelite3F2, modelelite3G1, \
|
||||
modelelite3G2, modelelite3H1, modelelite3H2, modelelite3I1, modelelite3I2, modelelite3J1, modelelite3J2, \
|
||||
modelelite3K1, modelelite3K2, modelelite3L1, modelelite3L2, modelelite3M1, modelelite3M2, \
|
||||
modelelite3X1, modelelite3X2, modelelite3X3, modelelite3X4, modelelite3X5, modelelite3X6, modelelite3X7, \
|
||||
modelelite3X8, modelelite3X9, modelelite3X10, modelelite3X11, modelelite3X12, modelelite3X13
|
||||
from .pointmlp import pointMLP, pointMLPElite
|
||||
|
|
|
@ -1,639 +0,0 @@
|
|||
"""
|
||||
Based on model31, different configures for elite version.
|
||||
Based on model30, change the grouper operation by normalization.
|
||||
Based on model28, only change configurations, mainly the reducer.
|
||||
Based on model27, change to x-a, reorgnized structure
|
||||
Based on model25, simple LocalGrouper (not x-a), reorgnized structure
|
||||
Based on model24, using ReLU to replace GELU
|
||||
Based on model22, remove attention
|
||||
Bsed on model21, change FPS to random sampling.
|
||||
Exactly based on Model10, but ReLU to GeLU
|
||||
Based on Model8, add dropout and max, avg combine.
|
||||
Based on Local model, add residual connections.
|
||||
The extraction is doubled for depth.
|
||||
Learning Point Cloud with Progressively Local representation.
|
||||
[B,3,N] - {[B,G,K,d]-[B,G,d]} - {[B,G',K,d]-[B,G',d]} -cls
|
||||
"""
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
# from torch import einsum
|
||||
# from einops import rearrange, repeat
|
||||
from einops.layers.torch import Rearrange
|
||||
|
||||
|
||||
from pointnet2_ops import pointnet2_utils
|
||||
|
||||
|
||||
def get_activation(activation):
|
||||
if activation.lower() == 'gelu':
|
||||
return nn.GELU()
|
||||
elif activation.lower() == 'rrelu':
|
||||
return nn.RReLU(inplace=True)
|
||||
elif activation.lower() == 'selu':
|
||||
return nn.SELU(inplace=True)
|
||||
elif activation.lower() == 'silu':
|
||||
return nn.SiLU(inplace=True)
|
||||
elif activation.lower() == 'hardswish':
|
||||
return nn.Hardswish(inplace=True)
|
||||
elif activation.lower() == 'leakyrelu':
|
||||
return nn.LeakyReLU(inplace=True)
|
||||
else:
|
||||
return nn.ReLU(inplace=True)
|
||||
|
||||
|
||||
def square_distance(src, dst):
|
||||
"""
|
||||
Calculate Euclid distance between each two points.
|
||||
src^T * dst = xn * xm + yn * ym + zn * zm;
|
||||
sum(src^2, dim=-1) = xn*xn + yn*yn + zn*zn;
|
||||
sum(dst^2, dim=-1) = xm*xm + ym*ym + zm*zm;
|
||||
dist = (xn - xm)^2 + (yn - ym)^2 + (zn - zm)^2
|
||||
= sum(src**2,dim=-1)+sum(dst**2,dim=-1)-2*src^T*dst
|
||||
Input:
|
||||
src: source points, [B, N, C]
|
||||
dst: target points, [B, M, C]
|
||||
Output:
|
||||
dist: per-point square distance, [B, N, M]
|
||||
"""
|
||||
B, N, _ = src.shape
|
||||
_, M, _ = dst.shape
|
||||
dist = -2 * torch.matmul(src, dst.permute(0, 2, 1))
|
||||
dist += torch.sum(src ** 2, -1).view(B, N, 1)
|
||||
dist += torch.sum(dst ** 2, -1).view(B, 1, M)
|
||||
return dist
|
||||
|
||||
|
||||
def index_points(points, idx):
|
||||
"""
|
||||
Input:
|
||||
points: input points data, [B, N, C]
|
||||
idx: sample index data, [B, S]
|
||||
Return:
|
||||
new_points:, indexed points data, [B, S, C]
|
||||
"""
|
||||
device = points.device
|
||||
B = points.shape[0]
|
||||
view_shape = list(idx.shape)
|
||||
view_shape[1:] = [1] * (len(view_shape) - 1)
|
||||
repeat_shape = list(idx.shape)
|
||||
repeat_shape[0] = 1
|
||||
batch_indices = torch.arange(B, dtype=torch.long).to(device).view(view_shape).repeat(repeat_shape)
|
||||
new_points = points[batch_indices, idx, :]
|
||||
return new_points
|
||||
|
||||
|
||||
def farthest_point_sample(xyz, npoint):
|
||||
"""
|
||||
Input:
|
||||
xyz: pointcloud data, [B, N, 3]
|
||||
npoint: number of samples
|
||||
Return:
|
||||
centroids: sampled pointcloud index, [B, npoint]
|
||||
"""
|
||||
device = xyz.device
|
||||
B, N, C = xyz.shape
|
||||
centroids = torch.zeros(B, npoint, dtype=torch.long).to(device)
|
||||
distance = torch.ones(B, N).to(device) * 1e10
|
||||
farthest = torch.randint(0, N, (B,), dtype=torch.long).to(device)
|
||||
batch_indices = torch.arange(B, dtype=torch.long).to(device)
|
||||
for i in range(npoint):
|
||||
centroids[:, i] = farthest
|
||||
centroid = xyz[batch_indices, farthest, :].view(B, 1, 3)
|
||||
dist = torch.sum((xyz - centroid) ** 2, -1)
|
||||
distance = torch.min(distance, dist)
|
||||
farthest = torch.max(distance, -1)[1]
|
||||
return centroids
|
||||
|
||||
|
||||
def query_ball_point(radius, nsample, xyz, new_xyz):
|
||||
"""
|
||||
Input:
|
||||
radius: local region radius
|
||||
nsample: max sample number in local region
|
||||
xyz: all points, [B, N, 3]
|
||||
new_xyz: query points, [B, S, 3]
|
||||
Return:
|
||||
group_idx: grouped points index, [B, S, nsample]
|
||||
"""
|
||||
device = xyz.device
|
||||
B, N, C = xyz.shape
|
||||
_, S, _ = new_xyz.shape
|
||||
group_idx = torch.arange(N, dtype=torch.long).to(device).view(1, 1, N).repeat([B, S, 1])
|
||||
sqrdists = square_distance(new_xyz, xyz)
|
||||
group_idx[sqrdists > radius ** 2] = N
|
||||
group_idx = group_idx.sort(dim=-1)[0][:, :, :nsample]
|
||||
group_first = group_idx[:, :, 0].view(B, S, 1).repeat([1, 1, nsample])
|
||||
mask = group_idx == N
|
||||
group_idx[mask] = group_first[mask]
|
||||
return group_idx
|
||||
|
||||
|
||||
def knn_point(nsample, xyz, new_xyz):
|
||||
"""
|
||||
Input:
|
||||
nsample: max sample number in local region
|
||||
xyz: all points, [B, N, C]
|
||||
new_xyz: query points, [B, S, C]
|
||||
Return:
|
||||
group_idx: grouped points index, [B, S, nsample]
|
||||
"""
|
||||
sqrdists = square_distance(new_xyz, xyz)
|
||||
_, group_idx = torch.topk(sqrdists, nsample, dim=-1, largest=False, sorted=False)
|
||||
return group_idx
|
||||
|
||||
|
||||
class LocalGrouper(nn.Module):
|
||||
def __init__(self, channel, groups, kneighbors, use_xyz=True, normalize="center", **kwargs):
|
||||
"""
|
||||
Give xyz[b,p,3] and fea[b,p,d], return new_xyz[b,g,3] and new_fea[b,g,k,d]
|
||||
:param groups: groups number
|
||||
:param kneighbors: k-nerighbors
|
||||
:param kwargs: others
|
||||
"""
|
||||
super(LocalGrouper, self).__init__()
|
||||
self.groups = groups
|
||||
self.kneighbors = kneighbors
|
||||
self.use_xyz = use_xyz
|
||||
if normalize is not None:
|
||||
self.normalize = normalize.lower()
|
||||
else:
|
||||
self.normalize = None
|
||||
if self.normalize not in ["center", "anchor"]:
|
||||
print(f"Unrecognized normalize parameter (self.normalize), set to None. Should be one of [center, anchor].")
|
||||
self.normalize = None
|
||||
if self.normalize is not None:
|
||||
add_channel=3 if self.use_xyz else 0
|
||||
self.affine_alpha = nn.Parameter(torch.ones([1,1,1,channel + add_channel]))
|
||||
self.affine_beta = nn.Parameter(torch.zeros([1, 1, 1, channel + add_channel]))
|
||||
|
||||
def forward(self, xyz, points):
|
||||
B, N, C = xyz.shape
|
||||
S = self.groups
|
||||
xyz = xyz.contiguous() # xyz [btach, points, xyz]
|
||||
|
||||
# fps_idx = torch.multinomial(torch.linspace(0, N - 1, steps=N).repeat(B, 1).to(xyz.device), num_samples=self.groups, replacement=False).long()
|
||||
# fps_idx = farthest_point_sample(xyz, self.groups).long()
|
||||
fps_idx = pointnet2_utils.furthest_point_sample(xyz, self.groups).long() # [B, npoint]
|
||||
new_xyz = index_points(xyz, fps_idx) # [B, npoint, 3]
|
||||
new_points = index_points(points, fps_idx) # [B, npoint, d]
|
||||
|
||||
idx = knn_point(self.kneighbors, xyz, new_xyz)
|
||||
# idx = query_ball_point(radius, nsample, xyz, new_xyz)
|
||||
grouped_xyz = index_points(xyz, idx) # [B, npoint, k, 3]
|
||||
grouped_points = index_points(points, idx) # [B, npoint, k, d]
|
||||
if self.use_xyz:
|
||||
grouped_points = torch.cat([grouped_points, grouped_xyz],dim=-1) # [B, npoint, k, d+3]
|
||||
if self.normalize is not None:
|
||||
if self.normalize =="center":
|
||||
std, mean = torch.std_mean(grouped_points, dim=2, keepdim=True)
|
||||
if self.normalize =="anchor":
|
||||
mean = torch.cat([new_points, new_xyz],dim=-1) if self.use_xyz else new_points
|
||||
mean = mean.unsqueeze(dim=-2) # [B, npoint, 1, d+3]
|
||||
std = torch.std(grouped_points-mean)
|
||||
grouped_points = (grouped_points-mean)/(std + 1e-5)
|
||||
grouped_points = self.affine_alpha*grouped_points + self.affine_beta
|
||||
|
||||
new_points = torch.cat([grouped_points, new_points.view(B, S, 1, -1).repeat(1, 1, self.kneighbors, 1)], dim=-1)
|
||||
return new_xyz, new_points
|
||||
|
||||
|
||||
class ConvBNReLU1D(nn.Module):
|
||||
def __init__(self, in_channels, out_channels, kernel_size=1, bias=True, activation='relu'):
|
||||
super(ConvBNReLU1D, self).__init__()
|
||||
self.act = get_activation(activation)
|
||||
self.net = nn.Sequential(
|
||||
nn.Conv1d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, bias=bias),
|
||||
nn.BatchNorm1d(out_channels),
|
||||
self.act
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
return self.net(x)
|
||||
|
||||
|
||||
class ConvBNReLURes1D(nn.Module):
|
||||
def __init__(self, channel, kernel_size=1, groups=1, res_expansion=1.0, bias=True, activation='relu'):
|
||||
super(ConvBNReLURes1D, self).__init__()
|
||||
self.act = get_activation(activation)
|
||||
self.net1 = nn.Sequential(
|
||||
nn.Conv1d(in_channels=channel, out_channels=int(channel * res_expansion),
|
||||
kernel_size=kernel_size, groups=groups, bias=bias),
|
||||
nn.BatchNorm1d(int(channel * res_expansion)),
|
||||
self.act
|
||||
)
|
||||
self.net2 = nn.Sequential(
|
||||
nn.Conv1d(in_channels=int(channel * res_expansion), out_channels=channel,
|
||||
kernel_size=kernel_size, groups=groups, bias=bias),
|
||||
nn.BatchNorm1d(channel)
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
return self.act(self.net2(self.net1(x)) + x)
|
||||
|
||||
|
||||
class PreExtraction(nn.Module):
|
||||
def __init__(self, channels, out_channels, blocks=1, groups=1, res_expansion=1, bias=True,
|
||||
activation='relu', use_xyz=True):
|
||||
"""
|
||||
input: [b,g,k,d]: output:[b,d,g]
|
||||
:param channels:
|
||||
:param blocks:
|
||||
"""
|
||||
super(PreExtraction, self).__init__()
|
||||
in_channels = 3+2*channels if use_xyz else 2*channels
|
||||
self.transfer = ConvBNReLU1D(in_channels, out_channels, bias=bias, activation=activation)
|
||||
operation = []
|
||||
for _ in range(blocks):
|
||||
operation.append(
|
||||
ConvBNReLURes1D(out_channels, groups=groups, res_expansion=res_expansion,
|
||||
bias=bias, activation=activation)
|
||||
)
|
||||
self.operation = nn.Sequential(*operation)
|
||||
|
||||
def forward(self, x):
|
||||
b, n, s, d = x.size() # torch.Size([32, 512, 32, 6])
|
||||
x = x.permute(0, 1, 3, 2)
|
||||
x = x.reshape(-1, d, s)
|
||||
x = self.transfer(x)
|
||||
batch_size, _, _ = x.size()
|
||||
x = self.operation(x) # [b, d, k]
|
||||
x = F.adaptive_max_pool1d(x, 1).view(batch_size, -1)
|
||||
x = x.reshape(b, n, -1).permute(0, 2, 1)
|
||||
return x
|
||||
|
||||
|
||||
class PosExtraction(nn.Module):
|
||||
def __init__(self, channels, blocks=1, groups=1, res_expansion=1, bias=True, activation='relu'):
|
||||
"""
|
||||
input[b,d,g]; output[b,d,g]
|
||||
:param channels:
|
||||
:param blocks:
|
||||
"""
|
||||
super(PosExtraction, self).__init__()
|
||||
operation = []
|
||||
for _ in range(blocks):
|
||||
operation.append(
|
||||
ConvBNReLURes1D(channels, groups=groups, res_expansion=res_expansion, bias=bias, activation=activation)
|
||||
)
|
||||
self.operation = nn.Sequential(*operation)
|
||||
|
||||
def forward(self, x): # [b, d, g]
|
||||
return self.operation(x)
|
||||
|
||||
|
||||
class modelelite3(nn.Module):
|
||||
def __init__(self, points=1024, class_num=40, embed_dim=64, groups=1, res_expansion=1.0,
|
||||
activation="relu", bias=True, use_xyz=True, normalize="center",
|
||||
dim_expansion=[2, 2, 2, 2], pre_blocks=[2, 2, 2, 2], pos_blocks=[2, 2, 2, 2],
|
||||
k_neighbors=[32, 32, 32, 32], reducers=[2, 2, 2, 2], **kwargs):
|
||||
super(modelelite3, self).__init__()
|
||||
self.stages = len(pre_blocks)
|
||||
self.class_num = class_num
|
||||
self.points = points
|
||||
self.embedding = ConvBNReLU1D(3, embed_dim, bias=bias, activation=activation)
|
||||
assert len(pre_blocks) == len(k_neighbors) == len(reducers) == len(pos_blocks) == len(dim_expansion), \
|
||||
"Please check stage number consistent for pre_blocks, pos_blocks k_neighbors, reducers."
|
||||
self.local_grouper_list = nn.ModuleList()
|
||||
self.pre_blocks_list = nn.ModuleList()
|
||||
self.pos_blocks_list = nn.ModuleList()
|
||||
last_channel = embed_dim
|
||||
anchor_points = self.points
|
||||
for i in range(len(pre_blocks)):
|
||||
out_channel = last_channel * dim_expansion[i]
|
||||
pre_block_num = pre_blocks[i]
|
||||
pos_block_num = pos_blocks[i]
|
||||
kneighbor = k_neighbors[i]
|
||||
reduce = reducers[i]
|
||||
anchor_points = anchor_points // reduce
|
||||
# append local_grouper_list
|
||||
local_grouper = LocalGrouper(last_channel, anchor_points, kneighbor, use_xyz, normalize) # [b,g,k,d]
|
||||
self.local_grouper_list.append(local_grouper)
|
||||
# append pre_block_list
|
||||
pre_block_module = PreExtraction(last_channel, out_channel, pre_block_num, groups=groups,
|
||||
res_expansion=res_expansion,
|
||||
bias=bias, activation=activation, use_xyz=use_xyz)
|
||||
self.pre_blocks_list.append(pre_block_module)
|
||||
# append pos_block_list
|
||||
pos_block_module = PosExtraction(out_channel, pos_block_num, groups=groups,
|
||||
res_expansion=res_expansion, bias=bias, activation=activation)
|
||||
self.pos_blocks_list.append(pos_block_module)
|
||||
|
||||
last_channel = out_channel
|
||||
|
||||
self.act = get_activation(activation)
|
||||
self.classifier = nn.Sequential(
|
||||
nn.Linear(last_channel, 512),
|
||||
nn.BatchNorm1d(512),
|
||||
self.act,
|
||||
nn.Dropout(0.5),
|
||||
nn.Linear(512, 256),
|
||||
nn.BatchNorm1d(256),
|
||||
self.act,
|
||||
nn.Dropout(0.5),
|
||||
nn.Linear(256, self.class_num)
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
xyz = x.permute(0, 2, 1)
|
||||
batch_size, _, _ = x.size()
|
||||
x = self.embedding(x) # B,D,N
|
||||
for i in range(self.stages):
|
||||
# Give xyz[b, p, 3] and fea[b, p, d], return new_xyz[b, g, 3] and new_fea[b, g, k, d]
|
||||
xyz, x = self.local_grouper_list[i](xyz, x.permute(0, 2, 1)) # [b,g,3] [b,g,k,d]
|
||||
x = self.pre_blocks_list[i](x) # [b,d,g]
|
||||
x = self.pos_blocks_list[i](x) # [b,d,g]
|
||||
|
||||
x = F.adaptive_max_pool1d(x, 1).squeeze(dim=-1)
|
||||
x = self.classifier(x)
|
||||
return x
|
||||
|
||||
|
||||
|
||||
def modelelite3A1(num_classes=40, **kwargs) -> modelelite3: # 3.48M
|
||||
return modelelite3(points=1024, class_num=num_classes, embed_dim=64, groups=1, res_expansion=0.125,
|
||||
activation="relu", bias=False, use_xyz=False, normalize="anchor",
|
||||
dim_expansion=[2, 2, 2, 2], pre_blocks=[2, 2, 2, 2], pos_blocks=[2, 2, 2, 2],
|
||||
k_neighbors=[24, 24, 24, 24], reducers=[2, 2, 2, 2], **kwargs)
|
||||
|
||||
|
||||
def modelelite3B1(num_classes=40, **kwargs) -> modelelite3: # 2.78M
|
||||
return modelelite3(points=1024, class_num=num_classes, embed_dim=64, groups=1, res_expansion=0.0625,
|
||||
activation="relu", bias=False, use_xyz=False, normalize="anchor",
|
||||
dim_expansion=[2, 2, 2, 2], pre_blocks=[2, 2, 2, 2], pos_blocks=[2, 2, 2, 2],
|
||||
k_neighbors=[24, 24, 24, 24], reducers=[2, 2, 2, 2], **kwargs)
|
||||
|
||||
|
||||
def modelelite3C1(num_classes=40, **kwargs) -> modelelite3: # 4.87M
|
||||
return modelelite3(points=1024, class_num=num_classes, embed_dim=64, groups=1, res_expansion=0.25,
|
||||
activation="relu", bias=False, use_xyz=False, normalize="anchor",
|
||||
dim_expansion=[2, 2, 2, 2], pre_blocks=[2, 2, 2, 2], pos_blocks=[2, 2, 2, 2],
|
||||
k_neighbors=[24, 24, 24, 24], reducers=[2, 2, 2, 2], **kwargs)
|
||||
|
||||
|
||||
def modelelite3D1(num_classes=40, **kwargs) -> modelelite3: # 2.26M
|
||||
return modelelite3(points=1024, class_num=num_classes, embed_dim=64, groups=8, res_expansion=0.125,
|
||||
activation="relu", bias=False, use_xyz=False, normalize="anchor",
|
||||
dim_expansion=[2, 2, 2, 2], pre_blocks=[2, 2, 2, 2], pos_blocks=[2, 2, 2, 2],
|
||||
k_neighbors=[24, 24, 24, 24], reducers=[2, 2, 2, 2], **kwargs)
|
||||
|
||||
|
||||
def modelelite3E1(num_classes=40, **kwargs) -> modelelite3: # 2.43M
|
||||
return modelelite3(points=1024, class_num=num_classes, embed_dim=64, groups=4, res_expansion=0.125,
|
||||
activation="relu", bias=False, use_xyz=False, normalize="anchor",
|
||||
dim_expansion=[2, 2, 2, 2], pre_blocks=[2, 2, 2, 2], pos_blocks=[2, 2, 2, 2],
|
||||
k_neighbors=[24, 24, 24, 24], reducers=[2, 2, 2, 2], **kwargs)
|
||||
|
||||
|
||||
def modelelite3F1(num_classes=40, **kwargs) -> modelelite3: # 0.85M
|
||||
return modelelite3(points=1024, class_num=num_classes, embed_dim=32, groups=4, res_expansion=0.125,
|
||||
activation="relu", bias=False, use_xyz=False, normalize="anchor",
|
||||
dim_expansion=[2, 2, 2, 2], pre_blocks=[2, 2, 2, 2], pos_blocks=[2, 2, 2, 2],
|
||||
k_neighbors=[24, 24, 24, 24], reducers=[2, 2, 2, 2], **kwargs)
|
||||
|
||||
|
||||
def modelelite3G1(num_classes=40, **kwargs) -> modelelite3: # 0.85M
|
||||
return modelelite3(points=1024, class_num=num_classes, embed_dim=32, groups=4, res_expansion=0.125,
|
||||
activation="relu", bias=False, use_xyz=False, normalize="anchor",
|
||||
dim_expansion=[2, 2, 2, 2], pre_blocks=[2, 2, 2, 2], pos_blocks=[2, 2, 2, 2],
|
||||
k_neighbors=[24, 24, 24, 24], reducers=[2, 2, 2, 2], **kwargs)
|
||||
|
||||
|
||||
def modelelite3H1(num_classes=40, **kwargs) -> modelelite3: # 3.56M
|
||||
return modelelite3(points=1024, class_num=num_classes, embed_dim=32, groups=1, res_expansion=1,
|
||||
activation="relu", bias=False, use_xyz=False, normalize="anchor",
|
||||
dim_expansion=[2, 2, 2, 2], pre_blocks=[2, 2, 2, 2], pos_blocks=[2, 2, 2, 2],
|
||||
k_neighbors=[24, 24, 24, 24], reducers=[2, 2, 2, 2], **kwargs)
|
||||
|
||||
|
||||
def modelelite3I1(num_classes=40, **kwargs) -> modelelite3: # 0.90M
|
||||
return modelelite3(points=1024, class_num=num_classes, embed_dim=32, groups=4, res_expansion=0.125,
|
||||
activation="relu", bias=False, use_xyz=False, normalize="anchor",
|
||||
dim_expansion=[2, 2, 2, 2], pre_blocks=[3, 3, 3, 3], pos_blocks=[3, 3, 3, 3],
|
||||
k_neighbors=[24, 24, 24, 24], reducers=[2, 2, 2, 2], **kwargs)
|
||||
|
||||
|
||||
def modelelite3J1(num_classes=40, **kwargs) -> modelelite3: # 0.93M
|
||||
return modelelite3(points=1024, class_num=num_classes, embed_dim=32, groups=4, res_expansion=0.125,
|
||||
activation="relu", bias=False, use_xyz=False, normalize="anchor",
|
||||
dim_expansion=[2, 2, 2, 2], pre_blocks=[3, 4, 6, 3], pos_blocks=[3, 4, 6, 3],
|
||||
k_neighbors=[24, 24, 24, 24], reducers=[2, 2, 2, 2], **kwargs)
|
||||
|
||||
|
||||
def modelelite3K1(num_classes=40, **kwargs) -> modelelite3: # 0.93M
|
||||
return modelelite3(points=1024, class_num=num_classes, embed_dim=32, groups=8, res_expansion=0.25,
|
||||
activation="relu", bias=False, use_xyz=False, normalize="anchor",
|
||||
dim_expansion=[2, 2, 2, 2], pre_blocks=[3, 4, 6, 3], pos_blocks=[3, 4, 6, 3],
|
||||
k_neighbors=[24, 24, 24, 24], reducers=[2, 2, 2, 2], **kwargs)
|
||||
|
||||
|
||||
def modelelite3L1(num_classes=40, **kwargs) -> modelelite3: # 0.95M
|
||||
return modelelite3(points=1024, class_num=num_classes, embed_dim=32, groups=8, res_expansion=0.25,
|
||||
activation="relu", bias=True, use_xyz=True, normalize="anchor",
|
||||
dim_expansion=[2, 2, 2, 2], pre_blocks=[3, 4, 6, 3], pos_blocks=[3, 4, 6, 3],
|
||||
k_neighbors=[24, 24, 24, 24], reducers=[2, 2, 2, 2], **kwargs)
|
||||
|
||||
def modelelite3M1(num_classes=40, **kwargs) -> modelelite3: # 0.94M
|
||||
return modelelite3(points=1024, class_num=num_classes, embed_dim=64, groups=4, res_expansion=0.125,
|
||||
activation="relu", bias=False, use_xyz=False, normalize="anchor",
|
||||
dim_expansion=[2, 2, 2], pre_blocks=[4, 4, 4], pos_blocks=[4, 4, 4],
|
||||
k_neighbors=[24, 24, 24], reducers=[2, 2, 2], **kwargs)
|
||||
|
||||
|
||||
|
||||
########version 2: 64 neighbors with 0.5 drop ratio ###########
|
||||
def modelelite3A2(num_classes=40, **kwargs) -> modelelite3: # 3.48M
|
||||
return modelelite3(points=1024, class_num=num_classes, embed_dim=64, groups=1, res_expansion=0.125,
|
||||
activation="relu", bias=False, use_xyz=False, normalize="anchor",
|
||||
dim_expansion=[2, 2, 2, 2], pre_blocks=[2, 2, 2, 2], pos_blocks=[2, 2, 2, 2],
|
||||
k_neighbors=[32, 32, 32, 32], reducers=[2, 2, 2, 2], **kwargs)
|
||||
|
||||
|
||||
def modelelite3B2(num_classes=40, **kwargs) -> modelelite3: # 2.78M
|
||||
return modelelite3(points=1024, class_num=num_classes, embed_dim=64, groups=1, res_expansion=0.0625,
|
||||
activation="relu", bias=False, use_xyz=False, normalize="anchor",
|
||||
dim_expansion=[2, 2, 2, 2], pre_blocks=[2, 2, 2, 2], pos_blocks=[2, 2, 2, 2],
|
||||
k_neighbors=[32, 32, 32, 32], reducers=[2, 2, 2, 2], **kwargs)
|
||||
|
||||
|
||||
def modelelite3C2(num_classes=40, **kwargs) -> modelelite3: # 4.87M
|
||||
return modelelite3(points=1024, class_num=num_classes, embed_dim=64, groups=1, res_expansion=0.25,
|
||||
activation="relu", bias=False, use_xyz=False, normalize="anchor",
|
||||
dim_expansion=[2, 2, 2, 2], pre_blocks=[2, 2, 2, 2], pos_blocks=[2, 2, 2, 2],
|
||||
k_neighbors=[32, 32, 32, 32], reducers=[2, 2, 2, 2], **kwargs)
|
||||
|
||||
|
||||
def modelelite3D2(num_classes=40, **kwargs) -> modelelite3: # 2.26M
|
||||
return modelelite3(points=1024, class_num=num_classes, embed_dim=64, groups=8, res_expansion=0.125,
|
||||
activation="relu", bias=False, use_xyz=False, normalize="anchor",
|
||||
dim_expansion=[2, 2, 2, 2], pre_blocks=[2, 2, 2, 2], pos_blocks=[2, 2, 2, 2],
|
||||
k_neighbors=[32, 32, 32, 32], reducers=[2, 2, 2, 2], **kwargs)
|
||||
|
||||
|
||||
def modelelite3E2(num_classes=40, **kwargs) -> modelelite3: # 2.43M
|
||||
return modelelite3(points=1024, class_num=num_classes, embed_dim=64, groups=4, res_expansion=0.125,
|
||||
activation="relu", bias=False, use_xyz=False, normalize="anchor",
|
||||
dim_expansion=[2, 2, 2, 2], pre_blocks=[2, 2, 2, 2], pos_blocks=[2, 2, 2, 2],
|
||||
k_neighbors=[32, 32, 32, 32], reducers=[2, 2, 2, 2], **kwargs)
|
||||
|
||||
|
||||
def modelelite3F2(num_classes=40, **kwargs) -> modelelite3: # 0.85M
|
||||
return modelelite3(points=1024, class_num=num_classes, embed_dim=32, groups=4, res_expansion=0.125,
|
||||
activation="relu", bias=False, use_xyz=False, normalize="anchor",
|
||||
dim_expansion=[2, 2, 2, 2], pre_blocks=[2, 2, 2, 2], pos_blocks=[2, 2, 2, 2],
|
||||
k_neighbors=[32, 32, 32, 32], reducers=[2, 2, 2, 2], **kwargs)
|
||||
|
||||
|
||||
def modelelite3G2(num_classes=40, **kwargs) -> modelelite3: # 0.85M
|
||||
return modelelite3(points=1024, class_num=num_classes, embed_dim=32, groups=4, res_expansion=0.125,
|
||||
activation="relu", bias=False, use_xyz=False, normalize="anchor",
|
||||
dim_expansion=[2, 2, 2, 2], pre_blocks=[2, 2, 2, 2], pos_blocks=[2, 2, 2, 2],
|
||||
k_neighbors=[32, 32, 32, 32], reducers=[2, 2, 2, 2], **kwargs)
|
||||
|
||||
|
||||
def modelelite3H2(num_classes=40, **kwargs) -> modelelite3: # 3.56M
|
||||
return modelelite3(points=1024, class_num=num_classes, embed_dim=32, groups=1, res_expansion=1,
|
||||
activation="relu", bias=False, use_xyz=False, normalize="anchor",
|
||||
dim_expansion=[2, 2, 2, 2], pre_blocks=[2, 2, 2, 2], pos_blocks=[2, 2, 2, 2],
|
||||
k_neighbors=[32, 32, 32, 32], reducers=[2, 2, 2, 2], **kwargs)
|
||||
|
||||
|
||||
def modelelite3I2(num_classes=40, **kwargs) -> modelelite3: # 0.90M
|
||||
return modelelite3(points=1024, class_num=num_classes, embed_dim=32, groups=4, res_expansion=0.125,
|
||||
activation="relu", bias=False, use_xyz=False, normalize="anchor",
|
||||
dim_expansion=[2, 2, 2, 2], pre_blocks=[3, 3, 3, 3], pos_blocks=[3, 3, 3, 3],
|
||||
k_neighbors=[32, 32, 32, 32], reducers=[2, 2, 2, 2], **kwargs)
|
||||
|
||||
|
||||
def modelelite3J2(num_classes=40, **kwargs) -> modelelite3: # 0.93M
|
||||
return modelelite3(points=1024, class_num=num_classes, embed_dim=32, groups=4, res_expansion=0.125,
|
||||
activation="relu", bias=False, use_xyz=False, normalize="anchor",
|
||||
dim_expansion=[2, 2, 2, 2], pre_blocks=[3, 4, 6, 3], pos_blocks=[3, 4, 6, 3],
|
||||
k_neighbors=[32, 32, 32, 32], reducers=[2, 2, 2, 2], **kwargs)
|
||||
|
||||
|
||||
def modelelite3K2(num_classes=40, **kwargs) -> modelelite3: # 0.93M
|
||||
return modelelite3(points=1024, class_num=num_classes, embed_dim=32, groups=8, res_expansion=0.25,
|
||||
activation="relu", bias=False, use_xyz=False, normalize="anchor",
|
||||
dim_expansion=[2, 2, 2, 2], pre_blocks=[3, 4, 6, 3], pos_blocks=[3, 4, 6, 3],
|
||||
k_neighbors=[32, 32, 32, 32], reducers=[2, 2, 2, 2], **kwargs)
|
||||
|
||||
|
||||
def modelelite3L2(num_classes=40, **kwargs) -> modelelite3: # 0.95M
|
||||
return modelelite3(points=1024, class_num=num_classes, embed_dim=32, groups=8, res_expansion=0.25,
|
||||
activation="relu", bias=True, use_xyz=True, normalize="anchor",
|
||||
dim_expansion=[2, 2, 2, 2], pre_blocks=[3, 4, 6, 3], pos_blocks=[3, 4, 6, 3],
|
||||
k_neighbors=[32, 32, 32, 32], reducers=[2, 2, 2, 2], **kwargs)
|
||||
|
||||
|
||||
def modelelite3M2(num_classes=40, **kwargs) -> modelelite3: # 0.94M
|
||||
return modelelite3(points=1024, class_num=num_classes, embed_dim=64, groups=4, res_expansion=0.125,
|
||||
activation="relu", bias=False, use_xyz=False, normalize="anchor",
|
||||
dim_expansion=[2, 2, 2], pre_blocks=[4, 4, 4], pos_blocks=[4, 4, 4],
|
||||
k_neighbors=[32, 32, 32], reducers=[2, 2, 2], **kwargs)
|
||||
|
||||
|
||||
|
||||
def modelelite3X1(num_classes=40, **kwargs) -> modelelite3: # 1.11M
|
||||
return modelelite3(points=1024, class_num=num_classes, embed_dim=32, groups=1, res_expansion=0.125,
|
||||
activation="relu", bias=False, use_xyz=False, normalize="anchor",
|
||||
dim_expansion=[2, 2, 2, 2], pre_blocks=[2, 2, 2, 2], pos_blocks=[2, 2, 2, 2],
|
||||
k_neighbors=[20, 20, 20, 20], reducers=[2, 2, 2, 2], **kwargs)
|
||||
|
||||
def modelelite3X2(num_classes=40, **kwargs) -> modelelite3: # 0.94M
|
||||
return modelelite3(points=1024, class_num=num_classes, embed_dim=32, groups=2, res_expansion=0.125,
|
||||
activation="relu", bias=False, use_xyz=False, normalize="anchor",
|
||||
dim_expansion=[2, 2, 2, 2], pre_blocks=[2, 2, 2, 2], pos_blocks=[2, 2, 2, 2],
|
||||
k_neighbors=[20, 20, 20, 20], reducers=[2, 2, 2, 2], **kwargs)
|
||||
|
||||
def modelelite3X3(num_classes=40, **kwargs) -> modelelite3: # 0.94
|
||||
return modelelite3(points=1024, class_num=num_classes, embed_dim=32, groups=1, res_expansion=0.125,
|
||||
activation="relu", bias=False, use_xyz=False, normalize="anchor",
|
||||
dim_expansion=[2, 2, 2, 2], pre_blocks=[1, 1, 1, 1], pos_blocks=[1, 1, 1, 1],
|
||||
k_neighbors=[20, 20, 20, 20], reducers=[2, 2, 2, 2], **kwargs)
|
||||
|
||||
def modelelite3X4(num_classes=40, **kwargs) -> modelelite3: # 2.77
|
||||
return modelelite3(points=1024, class_num=num_classes, embed_dim=64, groups=1, res_expansion=0.125,
|
||||
activation="relu", bias=False, use_xyz=False, normalize="anchor",
|
||||
dim_expansion=[2, 2, 2, 2], pre_blocks=[1, 1, 1, 1], pos_blocks=[1, 1, 1, 1],
|
||||
k_neighbors=[20, 20, 20, 20], reducers=[2, 2, 2, 2], **kwargs)
|
||||
|
||||
def modelelite3X5(num_classes=40, **kwargs) -> modelelite3: # 1.59
|
||||
return modelelite3(points=1024, class_num=num_classes, embed_dim=64, groups=1, res_expansion=0.125,
|
||||
activation="relu", bias=False, use_xyz=False, normalize="anchor",
|
||||
dim_expansion=[2, 2, 2, 1], pre_blocks=[1, 1, 1, 1], pos_blocks=[1, 1, 1, 1],
|
||||
k_neighbors=[20, 20, 20, 20], reducers=[2, 2, 2, 2], **kwargs)
|
||||
|
||||
def modelelite3X6(num_classes=40, **kwargs) -> modelelite3: # 1.44
|
||||
return modelelite3(points=1024, class_num=num_classes, embed_dim=64, groups=4, res_expansion=0.25,
|
||||
activation="relu", bias=False, use_xyz=False, normalize="anchor",
|
||||
dim_expansion=[2, 2, 2, 1], pre_blocks=[1, 1, 1, 1], pos_blocks=[1, 1, 1, 1],
|
||||
k_neighbors=[20, 20, 20, 20], reducers=[2, 2, 2, 2], **kwargs)
|
||||
|
||||
def modelelite3X7(num_classes=40, **kwargs) -> modelelite3: # 1.11M
|
||||
return modelelite3(points=1024, class_num=num_classes, embed_dim=32, groups=1, res_expansion=0.125,
|
||||
activation="relu", bias=False, use_xyz=False, normalize="anchor",
|
||||
dim_expansion=[2, 2, 2, 2], pre_blocks=[2, 2, 2, 2], pos_blocks=[2, 2, 2, 2],
|
||||
k_neighbors=[24,24,24,24], reducers=[2, 2, 2, 2], **kwargs)
|
||||
|
||||
def modelelite3X8(num_classes=40, **kwargs) -> modelelite3: # 0.95M
|
||||
return modelelite3(points=1024, class_num=num_classes, embed_dim=32, groups=1, res_expansion=0.125,
|
||||
activation="relu", bias=False, use_xyz=False, normalize="anchor",
|
||||
dim_expansion=[2, 2, 2, 2], pre_blocks=[1, 1, 2, 1], pos_blocks=[1, 1, 1, 1],
|
||||
k_neighbors=[24,24,24,24], reducers=[2, 2, 2, 2], **kwargs)
|
||||
|
||||
def modelelite3X9(num_classes=40, **kwargs) -> modelelite3: # 1.59M
|
||||
return modelelite3(points=1024, class_num=num_classes, embed_dim=64, groups=1, res_expansion=0.125,
|
||||
activation="relu", bias=False, use_xyz=False, normalize="anchor",
|
||||
dim_expansion=[2, 2, 2, 1], pre_blocks=[1, 1, 1, 1], pos_blocks=[1, 1, 1, 1],
|
||||
k_neighbors=[24,24,24,24], reducers=[2, 2, 2, 2], **kwargs)
|
||||
|
||||
def modelelite3X10(num_classes=40, **kwargs) -> modelelite3: # 0.72M
|
||||
return modelelite3(points=1024, class_num=num_classes, embed_dim=32, groups=1, res_expansion=0.25,
|
||||
activation="relu", bias=False, use_xyz=False, normalize="anchor",
|
||||
dim_expansion=[2, 2, 2, 1], pre_blocks=[1, 1, 2, 1], pos_blocks=[1, 1, 2, 1],
|
||||
k_neighbors=[24,24,24,24], reducers=[2, 2, 2, 2], **kwargs)
|
||||
|
||||
def modelelite3X11(num_classes=40, **kwargs) -> modelelite3: # 0.98M 79/13s
|
||||
return modelelite3(points=1024, class_num=num_classes, embed_dim=64, groups=1, res_expansion=0.25,
|
||||
activation="relu", bias=False, use_xyz=False, normalize="anchor",
|
||||
dim_expansion=[1, 2, 2, 2], pre_blocks=[1, 1, 1, 1], pos_blocks=[1, 1, 1, 0],
|
||||
k_neighbors=[20, 20, 20, 20], reducers=[2, 2, 2, 2], **kwargs)
|
||||
|
||||
def modelelite3X12(num_classes=40, **kwargs) -> modelelite3: # 0.98M 78/13s
|
||||
return modelelite3(points=1024, class_num=num_classes, embed_dim=64, groups=1, res_expansion=0.25,
|
||||
activation="relu", bias=False, use_xyz=False, normalize="anchor",
|
||||
dim_expansion=[1, 2, 2, 2], pre_blocks=[1, 1, 1, 1], pos_blocks=[1, 1, 1, 0],
|
||||
k_neighbors=[24,24,24,24], reducers=[2, 2, 2, 2], **kwargs)
|
||||
|
||||
def modelelite3X13(num_classes=40, **kwargs) -> modelelite3: # 0.94M 90/15s
|
||||
return modelelite3(points=1024, class_num=num_classes, embed_dim=64, groups=1, res_expansion=0.125,
|
||||
activation="relu", bias=False, use_xyz=False, normalize="anchor",
|
||||
dim_expansion=[1, 2, 2, 2], pre_blocks=[1, 2, 2, 2], pos_blocks=[1, 1, 0, 0],
|
||||
k_neighbors=[24,24,24,24], reducers=[2, 2, 2, 2], **kwargs)
|
||||
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
# data = torch.rand(2, 128, 10)
|
||||
# model = ConvBNReLURes1D(128, groups=2, activation='relu')
|
||||
# out = model(data)
|
||||
# print(out.shape)
|
||||
#
|
||||
# batch, groups, neighbors, dim = 2, 512, 32, 16
|
||||
# x = torch.rand(batch, groups, neighbors, dim)
|
||||
# pre_extractor = PreExtraction(dim, 3)
|
||||
# out = pre_extractor(x)
|
||||
# print(out.shape)
|
||||
#
|
||||
# x = torch.rand(batch, dim, groups)
|
||||
# pos_extractor = PosExtraction(dim, 3)
|
||||
# out = pos_extractor(x)
|
||||
# print(out.shape)
|
||||
|
||||
data = torch.rand(2, 3, 1024)
|
||||
|
||||
print("===> testing modelN ...")
|
||||
model = modelelite3A1()
|
||||
out = model(data)
|
||||
print(out.shape)
|
|
@ -1,18 +1,4 @@
|
|||
"""
|
||||
Based on model30, change the grouper operation by normalization.
|
||||
Based on model28, only change configurations, mainly the reducer.
|
||||
Based on model27, change to x-a, reorgnized structure
|
||||
Based on model25, simple LocalGrouper (not x-a), reorgnized structure
|
||||
Based on model24, using ReLU to replace GELU
|
||||
Based on model22, remove attention
|
||||
Bsed on model21, change FPS to random sampling.
|
||||
Exactly based on Model10, but ReLU to GeLU
|
||||
Based on Model8, add dropout and max, avg combine.
|
||||
Based on Local model, add residual connections.
|
||||
The extraction is doubled for depth.
|
||||
Learning Point Cloud with Progressively Local representation.
|
||||
[B,3,N] - {[B,G,K,d]-[B,G,d]} - {[B,G',K,d]-[B,G',d]} -cls
|
||||
"""
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
@ -291,12 +277,12 @@ class PosExtraction(nn.Module):
|
|||
return self.operation(x)
|
||||
|
||||
|
||||
class model31(nn.Module):
|
||||
class Model(nn.Module):
|
||||
def __init__(self, points=1024, class_num=40, embed_dim=64, groups=1, res_expansion=1.0,
|
||||
activation="relu", bias=True, use_xyz=True, normalize="center",
|
||||
dim_expansion=[2, 2, 2, 2], pre_blocks=[2, 2, 2, 2], pos_blocks=[2, 2, 2, 2],
|
||||
k_neighbors=[32, 32, 32, 32], reducers=[2, 2, 2, 2], **kwargs):
|
||||
super(model31, self).__init__()
|
||||
super(Model, self).__init__()
|
||||
self.stages = len(pre_blocks)
|
||||
self.class_num = class_num
|
||||
self.points = points
|
||||
|
@ -359,172 +345,24 @@ class model31(nn.Module):
|
|||
|
||||
|
||||
|
||||
def model31A(num_classes=40, **kwargs) -> model31:
|
||||
return model31(points=1024, class_num=num_classes, embed_dim=64, groups=1, res_expansion=1.0,
|
||||
activation="relu", bias=False, use_xyz=False, normalize="anchor",
|
||||
dim_expansion=[2, 2, 2, 2], pre_blocks=[2, 2, 2, 2], pos_blocks=[2, 2, 2, 2],
|
||||
k_neighbors=[32, 32, 32, 32], reducers=[2, 2, 2, 2], **kwargs)
|
||||
|
||||
def model31B(num_classes=40, **kwargs) -> model31:
|
||||
return model31(points=1024, class_num=num_classes, embed_dim=64, groups=1, res_expansion=1.0,
|
||||
activation="relu", bias=False, use_xyz=False, normalize="center",
|
||||
dim_expansion=[2, 2, 2, 2], pre_blocks=[2, 2, 2, 2], pos_blocks=[2, 2, 2, 2],
|
||||
k_neighbors=[32, 32, 32, 32], reducers=[2, 2, 2, 2], **kwargs)
|
||||
|
||||
|
||||
def model31C(num_classes=40, **kwargs) -> model31: # 85.219, 85.67, 85.115 , 85.566
|
||||
return model31(points=1024, class_num=num_classes, embed_dim=64, groups=1, res_expansion=1.0,
|
||||
def pointMLP(num_classes=40, **kwargs) -> Model:
|
||||
return Model(points=1024, class_num=num_classes, embed_dim=64, groups=1, res_expansion=1.0,
|
||||
activation="relu", bias=False, use_xyz=False, normalize="anchor",
|
||||
dim_expansion=[2, 2, 2, 2], pre_blocks=[2, 2, 2, 2], pos_blocks=[2, 2, 2, 2],
|
||||
k_neighbors=[24, 24, 24, 24], reducers=[2, 2, 2, 2], **kwargs)
|
||||
|
||||
def model31D(num_classes=40, **kwargs) -> model31:
|
||||
return model31(points=1024, class_num=num_classes, embed_dim=64, groups=1, res_expansion=1.0,
|
||||
|
||||
def pointMLPElite(num_classes=40, **kwargs) -> Model:
|
||||
return Model(points=1024, class_num=num_classes, embed_dim=32, groups=1, res_expansion=0.25,
|
||||
activation="relu", bias=False, use_xyz=False, normalize="anchor",
|
||||
dim_expansion=[2, 2, 2, 2], pre_blocks=[2, 2, 2, 2], pos_blocks=[2, 2, 2, 2],
|
||||
k_neighbors=[20, 20, 20, 20], reducers=[2, 2, 2, 2], **kwargs)
|
||||
|
||||
|
||||
def model31E(num_classes=40, **kwargs) -> model31:
|
||||
return model31(points=1024, class_num=num_classes, embed_dim=32, groups=1, res_expansion=1.0,
|
||||
activation="relu", bias=False, use_xyz=False, normalize="anchor",
|
||||
dim_expansion=[2, 2, 2, 2], pre_blocks=[2, 2, 2, 2], pos_blocks=[2, 2, 2, 2],
|
||||
k_neighbors=[32, 32, 32, 32], reducers=[2, 2, 2, 2], **kwargs)
|
||||
|
||||
|
||||
def model31F(num_classes=40, **kwargs) -> model31:
|
||||
return model31(points=1024, class_num=num_classes, embed_dim=64, groups=1, res_expansion=0.125,
|
||||
activation="relu", bias=False, use_xyz=False, normalize="anchor",
|
||||
dim_expansion=[2, 2, 2, 2], pre_blocks=[2, 2, 2, 2], pos_blocks=[2, 2, 2, 2],
|
||||
k_neighbors=[32, 32, 32, 32], reducers=[2, 2, 2, 2], **kwargs)
|
||||
|
||||
|
||||
def model31G(num_classes=40, **kwargs) -> model31:
|
||||
return model31(points=1024, class_num=num_classes, embed_dim=64, groups=16, res_expansion=2.0,
|
||||
activation="relu", bias=False, use_xyz=False, normalize="anchor",
|
||||
dim_expansion=[2, 2, 2, 2], pre_blocks=[2, 2, 2, 2], pos_blocks=[2, 2, 2, 2],
|
||||
k_neighbors=[32, 32, 32, 32], reducers=[2, 2, 2, 2], **kwargs)
|
||||
|
||||
|
||||
"""
|
||||
for ablation study
|
||||
"""
|
||||
|
||||
def model31Ablation1111(num_classes=40, **kwargs) -> model31:
|
||||
return model31(points=1024, class_num=num_classes, embed_dim=64, groups=1, res_expansion=1.0,
|
||||
activation="relu", bias=False, use_xyz=False, normalize="anchor",
|
||||
dim_expansion=[2, 2, 2, 2], pre_blocks=[1, 1, 1, 1], pos_blocks=[1, 1, 1, 1],
|
||||
k_neighbors=[24, 24, 24, 24], reducers=[2, 2, 2, 2], **kwargs)
|
||||
|
||||
def model31Ablation1111NOnorm(num_classes=40, **kwargs) -> model31:
|
||||
return model31(points=1024, class_num=num_classes, embed_dim=64, groups=1, res_expansion=1.0,
|
||||
activation="relu", bias=False, use_xyz=False, normalize=None,
|
||||
dim_expansion=[2, 2, 2, 2], pre_blocks=[1, 1, 1, 1], pos_blocks=[1, 1, 1, 1],
|
||||
k_neighbors=[24, 24, 24, 24], reducers=[2, 2, 2, 2], **kwargs)
|
||||
|
||||
def model31Ablation3333(num_classes=40, **kwargs) -> model31:
|
||||
return model31(points=1024, class_num=num_classes, embed_dim=64, groups=1, res_expansion=1.0,
|
||||
activation="relu", bias=False, use_xyz=False, normalize="anchor",
|
||||
dim_expansion=[2, 2, 2, 2], pre_blocks=[3, 3, 3, 3], pos_blocks=[3, 3, 3, 3],
|
||||
k_neighbors=[24, 24, 24, 24], reducers=[2, 2, 2, 2], **kwargs)
|
||||
|
||||
def model31Ablation3333NOnorm(num_classes=40, **kwargs) -> model31:
|
||||
return model31(points=1024, class_num=num_classes, embed_dim=64, groups=1, res_expansion=1.0,
|
||||
activation="relu", bias=False, use_xyz=False, normalize=None,
|
||||
dim_expansion=[2, 2, 2, 2], pre_blocks=[3, 3, 3, 3], pos_blocks=[3, 3, 3, 3],
|
||||
k_neighbors=[24, 24, 24, 24], reducers=[2, 2, 2, 2], **kwargs)
|
||||
|
||||
def model31Ablation2222NOnorm(num_classes=40, **kwargs) -> model31:
|
||||
return model31(points=1024, class_num=num_classes, embed_dim=64, groups=1, res_expansion=1.0,
|
||||
activation="relu", bias=False, use_xyz=False, normalize=None,
|
||||
dim_expansion=[2, 2, 2, 2], pre_blocks=[2, 2, 2, 2], pos_blocks=[2, 2, 2, 2],
|
||||
k_neighbors=[24, 24, 24, 24], reducers=[2, 2, 2, 2], **kwargs)
|
||||
|
||||
|
||||
def model31AblationNopre(num_classes=40, **kwargs) -> model31:
|
||||
return model31(points=1024, class_num=num_classes, embed_dim=64, groups=1, res_expansion=1.0,
|
||||
activation="relu", bias=False, use_xyz=False, normalize="anchor",
|
||||
dim_expansion=[2, 2, 2, 2], pre_blocks=[0, 0, 0, 0], pos_blocks=[2, 2, 2, 2],
|
||||
k_neighbors=[24, 24, 24, 24], reducers=[2, 2, 2, 2], **kwargs)
|
||||
|
||||
def model31AblationNopos(num_classes=40, **kwargs) -> model31:
|
||||
return model31(points=1024, class_num=num_classes, embed_dim=64, groups=1, res_expansion=1.0,
|
||||
activation="relu", bias=False, use_xyz=False, normalize="anchor",
|
||||
dim_expansion=[2, 2, 2, 2], pre_blocks=[2, 2, 2, 2], pos_blocks=[0, 0, 0, 0],
|
||||
k_neighbors=[24, 24, 24, 24], reducers=[2, 2, 2, 2], **kwargs)
|
||||
|
||||
dim_expansion=[2, 2, 2, 1], pre_blocks=[1, 1, 2, 1], pos_blocks=[1, 1, 2, 1],
|
||||
k_neighbors=[24,24,24,24], reducers=[2, 2, 2, 2], **kwargs)
|
||||
|
||||
if __name__ == '__main__':
|
||||
# data = torch.rand(2, 128, 10)
|
||||
# model = ConvBNReLURes1D(128, groups=2, activation='relu')
|
||||
# out = model(data)
|
||||
# print(out.shape)
|
||||
#
|
||||
# batch, groups, neighbors, dim = 2, 512, 32, 16
|
||||
# x = torch.rand(batch, groups, neighbors, dim)
|
||||
# pre_extractor = PreExtraction(dim, 3)
|
||||
# out = pre_extractor(x)
|
||||
# print(out.shape)
|
||||
#
|
||||
# x = torch.rand(batch, dim, groups)
|
||||
# pos_extractor = PosExtraction(dim, 3)
|
||||
# out = pos_extractor(x)
|
||||
# print(out.shape)
|
||||
|
||||
data = torch.rand(2, 3, 1024)
|
||||
print("===> testing model ...")
|
||||
model = model31()
|
||||
out = model(data)
|
||||
print(out.shape)
|
||||
|
||||
print("===> testing modelA ...")
|
||||
model = model31A()
|
||||
out = model(data)
|
||||
print(out.shape)
|
||||
|
||||
print("===> testing modelB ...")
|
||||
model = model31B()
|
||||
out = model(data)
|
||||
print(out.shape)
|
||||
|
||||
print("===> testing modelC ...")
|
||||
model = model31C()
|
||||
out = model(data)
|
||||
print(out.shape)
|
||||
|
||||
print("===> testing modelD ...")
|
||||
model = model31D()
|
||||
out = model(data)
|
||||
print(out.shape)
|
||||
|
||||
|
||||
print("===> testing model31Ablation1111 ...")
|
||||
model = model31Ablation1111()
|
||||
out = model(data)
|
||||
print(out.shape)
|
||||
|
||||
print("===> testing model31Ablation1111NOnorm ...")
|
||||
model = model31Ablation1111NOnorm()
|
||||
out = model(data)
|
||||
print(out.shape)
|
||||
|
||||
print("===> testing model31Ablation3333 ...")
|
||||
model = model31Ablation3333()
|
||||
out = model(data)
|
||||
print(out.shape)
|
||||
|
||||
print("===> testing model31Ablation3333NOnorm ...")
|
||||
model = model31Ablation3333NOnorm()
|
||||
out = model(data)
|
||||
print(out.shape)
|
||||
|
||||
print("===> testing model31AblationNopre ...")
|
||||
model = model31AblationNopre()
|
||||
out = model(data)
|
||||
print(out.shape)
|
||||
|
||||
print("===> testing model31AblationNopos ...")
|
||||
model = model31AblationNopos()
|
||||
print("===> testing pointMLP ...")
|
||||
model = pointMLP()
|
||||
out = model(data)
|
||||
print(out.shape)
|
||||
|
Loading…
Reference in a new issue