fixed missing file bugs, error uploaded folder
This commit is contained in:
parent
ac97c8d2c0
commit
b5ebdadadc
|
@ -1,185 +0,0 @@
|
|||
|
||||
|
||||
import os
|
||||
import sys
|
||||
import glob
|
||||
import h5py
|
||||
import numpy as np
|
||||
import torch
|
||||
from torch.utils.data import Dataset
|
||||
|
||||
|
||||
# change this to your data root
|
||||
DATA_DIR = 'data/'
|
||||
os.environ["HDF5_USE_FILE_LOCKING"] = "FALSE"
|
||||
|
||||
def download_modelnet40():
|
||||
if not os.path.exists(DATA_DIR):
|
||||
os.mkdir(DATA_DIR)
|
||||
if not os.path.exists(os.path.join(DATA_DIR, 'modelnet40_ply_hdf5_2048')):
|
||||
os.mkdir(os.path.join(DATA_DIR, 'modelnet40_ply_hdf5_2048'))
|
||||
www = 'https://shapenet.cs.stanford.edu/media/modelnet40_ply_hdf5_2048.zip'
|
||||
zipfile = os.path.basename(www)
|
||||
os.system('wget %s --no-check-certificate; unzip %s' % (www, zipfile))
|
||||
os.system('mv %s %s' % (zipfile[:-4], DATA_DIR))
|
||||
os.system('rm %s' % (zipfile))
|
||||
|
||||
|
||||
def download_shapenetpart():
|
||||
if not os.path.exists(DATA_DIR):
|
||||
os.mkdir(DATA_DIR)
|
||||
if not os.path.exists(os.path.join(DATA_DIR)):
|
||||
os.mkdir(os.path.join(DATA_DIR))
|
||||
www = 'https://shapenet.cs.stanford.edu/media/shapenet_part_seg_hdf5_data.zip'
|
||||
zipfile = os.path.basename(www)
|
||||
os.system('wget %s --no-check-certificate; unzip %s' % (www, zipfile))
|
||||
os.system('mv %s %s' % (zipfile[:-4], os.path.join(DATA_DIR)))
|
||||
os.system('rm %s' % (zipfile))
|
||||
|
||||
|
||||
def load_data_normal(partition):
|
||||
f = h5py.File(os.path.join(DATA_DIR, 'modelnet40_normal', 'normal_%s.h5'%partition), 'r+')
|
||||
data = f['xyz'][:].astype('float32')
|
||||
label = f['normal'][:].astype('float32')
|
||||
f.close()
|
||||
return data, label
|
||||
|
||||
|
||||
def load_data_cls(partition):
|
||||
download_modelnet40()
|
||||
all_data = []
|
||||
all_label = []
|
||||
for h5_name in glob.glob(os.path.join(DATA_DIR, 'modelnet40*hdf5_2048', '*%s*.h5'%partition)):
|
||||
f = h5py.File(h5_name, 'r+')
|
||||
data = f['data'][:].astype('float32')
|
||||
label = f['label'][:].astype('int64')
|
||||
f.close()
|
||||
all_data.append(data)
|
||||
all_label.append(label)
|
||||
all_data = np.concatenate(all_data, axis=0)
|
||||
all_label = np.concatenate(all_label, axis=0)
|
||||
return all_data, all_label
|
||||
|
||||
|
||||
def load_data_partseg(partition):
|
||||
download_shapenetpart()
|
||||
all_data = []
|
||||
all_label = []
|
||||
all_seg = []
|
||||
if partition == 'trainval':
|
||||
file = glob.glob(os.path.join(DATA_DIR, 'part_segmentation_data', '*train*.h5')) \
|
||||
+ glob.glob(os.path.join(DATA_DIR, 'part_segmentation_data', '*val*.h5'))
|
||||
else:
|
||||
file = glob.glob(os.path.join(DATA_DIR, 'part_segmentation_data', '*%s*.h5'%partition))
|
||||
for h5_name in file:
|
||||
f = h5py.File(h5_name, 'r+')
|
||||
data = f['data'][:].astype('float32')
|
||||
label = f['label'][:].astype('int64')
|
||||
seg = f['pid'][:].astype('int64')
|
||||
f.close()
|
||||
all_data.append(data)
|
||||
all_label.append(label)
|
||||
all_seg.append(seg)
|
||||
all_data = np.concatenate(all_data, axis=0)
|
||||
all_label = np.concatenate(all_label, axis=0)
|
||||
all_seg = np.concatenate(all_seg, axis=0)
|
||||
return all_data, all_label, all_seg
|
||||
|
||||
|
||||
def translate_pointcloud(pointcloud):
|
||||
xyz1 = np.random.uniform(low=2./3., high=3./2., size=[3])
|
||||
xyz2 = np.random.uniform(low=-0.2, high=0.2, size=[3])
|
||||
|
||||
translated_pointcloud = np.add(np.multiply(pointcloud, xyz1), xyz2).astype('float32')
|
||||
return translated_pointcloud
|
||||
|
||||
|
||||
def jitter_pointcloud(pointcloud, sigma=0.01, clip=0.02):
|
||||
N, C = pointcloud.shape
|
||||
pointcloud += np.clip(sigma * np.random.randn(N, C), -1*clip, clip)
|
||||
return pointcloud
|
||||
|
||||
|
||||
def rotate_pointcloud(pointcloud):
|
||||
theta = np.pi*2 * np.random.uniform()
|
||||
rotation_matrix = np.array([[np.cos(theta), -np.sin(theta)],[np.sin(theta), np.cos(theta)]])
|
||||
pointcloud[:,[0,2]] = pointcloud[:,[0,2]].dot(rotation_matrix) # random rotation (x,z)
|
||||
return pointcloud
|
||||
|
||||
|
||||
class ModelNet40(Dataset):
|
||||
def __init__(self, num_points, partition='train'):
|
||||
self.data, self.label = load_data_cls(partition)
|
||||
self.num_points = num_points
|
||||
self.partition = partition
|
||||
|
||||
def __getitem__(self, item):
|
||||
pointcloud = self.data[item][:self.num_points]
|
||||
label = self.label[item]
|
||||
if self.partition == 'train':
|
||||
pointcloud = translate_pointcloud(pointcloud)
|
||||
#pointcloud = rotate_pointcloud(pointcloud)
|
||||
np.random.shuffle(pointcloud)
|
||||
return pointcloud, label
|
||||
|
||||
def __len__(self):
|
||||
return self.data.shape[0]
|
||||
|
||||
class ModelNetNormal(Dataset):
|
||||
def __init__(self, num_points, partition='train'):
|
||||
self.data, self.label = load_data_normal(partition)
|
||||
self.num_points = num_points
|
||||
self.partition = partition
|
||||
|
||||
def __getitem__(self, item):
|
||||
pointcloud = self.data[item][:self.num_points]
|
||||
label = self.label[item][:self.num_points]
|
||||
if self.partition == 'train':
|
||||
#pointcloud = translate_pointcloud(pointcloud)
|
||||
idx = np.arange(0, pointcloud.shape[0], dtype=np.int64)
|
||||
np.random.shuffle(idx)
|
||||
pointcloud = self.data[item][idx]
|
||||
label = self.label[item][idx]
|
||||
return pointcloud, label
|
||||
|
||||
def __len__(self):
|
||||
return self.data.shape[0]
|
||||
|
||||
class ShapeNetPart(Dataset):
|
||||
def __init__(self, num_points=2048, partition='train', class_choice=None):
|
||||
self.data, self.label, self.seg = load_data_partseg(partition)
|
||||
self.cat2id = {'airplane': 0, 'bag': 1, 'cap': 2, 'car': 3, 'chair': 4,
|
||||
'earphone': 5, 'guitar': 6, 'knife': 7, 'lamp': 8, 'laptop': 9,
|
||||
'motor': 10, 'mug': 11, 'pistol': 12, 'rocket': 13, 'skateboard': 14, 'table': 15}
|
||||
self.seg_num = [4, 2, 2, 4, 4, 3, 3, 2, 4, 2, 6, 2, 3, 3, 3, 3]
|
||||
self.index_start = [0, 4, 6, 8, 12, 16, 19, 22, 24, 28, 30, 36, 38, 41, 44, 47]
|
||||
self.num_points = num_points
|
||||
self.partition = partition
|
||||
self.class_choice = class_choice
|
||||
|
||||
if self.class_choice != None:
|
||||
id_choice = self.cat2id[self.class_choice]
|
||||
indices = (self.label == id_choice).squeeze()
|
||||
self.data = self.data[indices]
|
||||
self.label = self.label[indices]
|
||||
self.seg = self.seg[indices]
|
||||
self.seg_num_all = self.seg_num[id_choice]
|
||||
self.seg_start_index = self.index_start[id_choice]
|
||||
else:
|
||||
self.seg_num_all = 50
|
||||
self.seg_start_index = 0
|
||||
|
||||
def __getitem__(self, item):
|
||||
pointcloud = self.data[item][:self.num_points]
|
||||
label = self.label[item]
|
||||
seg = self.seg[item][:self.num_points]
|
||||
if self.partition == 'trainval':
|
||||
pointcloud = translate_pointcloud(pointcloud)
|
||||
indices = list(range(pointcloud.shape[0]))
|
||||
np.random.shuffle(indices)
|
||||
pointcloud = pointcloud[indices]
|
||||
seg = seg[indices]
|
||||
return pointcloud, label, seg
|
||||
|
||||
def __len__(self):
|
||||
return self.data.shape[0]
|
|
@ -338,7 +338,7 @@ class PointMLP(nn.Module):
|
|||
self.stages = len(pre_blocks)
|
||||
self.class_num = num_classes
|
||||
self.points = points
|
||||
self.embedding = ConvBNReLU1D(3, embed_dim, bias=bias, activation=activation)
|
||||
self.embedding = ConvBNReLU1D(6, embed_dim, bias=bias, activation=activation)
|
||||
assert len(pre_blocks) == len(k_neighbors) == len(reducers) == len(pos_blocks) == len(dim_expansion), \
|
||||
"Please check stage number consistent for pre_blocks, pos_blocks k_neighbors, reducers."
|
||||
self.local_grouper_list = nn.ModuleList()
|
||||
|
@ -401,14 +401,14 @@ class PointMLP(nn.Module):
|
|||
self.classifier = nn.Sequential(
|
||||
nn.Conv1d(gmp_dim+cls_dim+de_dims[-1], 128, 1, bias=bias),
|
||||
nn.BatchNorm1d(128),
|
||||
self.act,
|
||||
nn.Dropout(),
|
||||
nn.Conv1d(128, num_classes, 1, bias=bias)
|
||||
)
|
||||
self.en_dims = en_dims
|
||||
|
||||
def forward(self, x, cls_label):
|
||||
def forward(self, x, norm_plt, cls_label):
|
||||
xyz = x.permute(0, 2, 1)
|
||||
x = torch.cat([x,norm_plt],dim=1)
|
||||
x = self.embedding(x) # B,D,N
|
||||
|
||||
xyz_list = [xyz] # [B, N, 3]
|
||||
|
@ -440,8 +440,8 @@ class PointMLP(nn.Module):
|
|||
cls_token = self.cls_map(cls_label.unsqueeze(dim=-1)) # [b, cls_dim, 1]
|
||||
x = torch.cat([x, global_context.repeat([1, 1, x.shape[-1]]), cls_token.repeat([1, 1, x.shape[-1]])], dim=1)
|
||||
x = self.classifier(x)
|
||||
# x = F.log_softmax(x, dim=1)
|
||||
# x = x.permute(0, 2, 1)
|
||||
x = F.log_softmax(x, dim=1)
|
||||
x = x.permute(0, 2, 1)
|
||||
return x
|
||||
|
||||
|
||||
|
@ -459,6 +459,6 @@ if __name__ == '__main__':
|
|||
norm = torch.rand(2, 3, 2048)
|
||||
cls_label = torch.rand([2, 16])
|
||||
print("===> testing modelD ...")
|
||||
model = model31G(50)
|
||||
model = pointMLP(50)
|
||||
out = model(data, cls_label) # [2,2048,50]
|
||||
print(out.shape)
|
|
@ -1,38 +0,0 @@
|
|||
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
|
||||
|
||||
def cal_loss(pred, gold, smoothing=True):
|
||||
''' Calculate cross entropy loss, apply label smoothing if needed. '''
|
||||
|
||||
gold = gold.contiguous().view(-1)
|
||||
|
||||
if smoothing:
|
||||
eps = 0.2
|
||||
n_class = pred.size(1)
|
||||
|
||||
one_hot = torch.zeros_like(pred).scatter(1, gold.view(-1, 1), 1)
|
||||
one_hot = one_hot * (1 - eps) + (1 - one_hot) * eps / (n_class - 1)
|
||||
log_prb = F.log_softmax(pred, dim=1)
|
||||
|
||||
loss = -(one_hot * log_prb).sum(dim=1).mean()
|
||||
else:
|
||||
loss = F.cross_entropy(pred, gold, reduction='mean')
|
||||
|
||||
return loss
|
||||
|
||||
|
||||
class IOStream():
|
||||
def __init__(self, path):
|
||||
self.f = open(path, 'a')
|
||||
|
||||
def cprint(self, text):
|
||||
print(text)
|
||||
self.f.write(text+'\n')
|
||||
self.f.flush()
|
||||
|
||||
def close(self):
|
||||
self.f.close()
|
0
part_segmentation/util/__init__.py
Executable file
0
part_segmentation/util/__init__.py
Executable file
164
part_segmentation/util/data_util.py
Executable file
164
part_segmentation/util/data_util.py
Executable file
|
@ -0,0 +1,164 @@
|
|||
import glob
|
||||
import h5py
|
||||
import numpy as np
|
||||
from torch.utils.data import Dataset
|
||||
import os
|
||||
import json
|
||||
os.environ["HDF5_USE_FILE_LOCKING"] = "FALSE"
|
||||
|
||||
|
||||
def load_data(partition):
|
||||
all_data = []
|
||||
all_label = []
|
||||
for h5_name in glob.glob('./data/modelnet40_ply_hdf5_2048/ply_data_%s*.h5' % partition):
|
||||
f = h5py.File(h5_name)
|
||||
data = f['data'][:].astype('float32')
|
||||
label = f['label'][:].astype('int64')
|
||||
f.close()
|
||||
all_data.append(data)
|
||||
all_label.append(label)
|
||||
all_data = np.concatenate(all_data, axis=0)
|
||||
all_label = np.concatenate(all_label, axis=0)
|
||||
return all_data, all_label
|
||||
|
||||
|
||||
def pc_normalize(pc):
|
||||
centroid = np.mean(pc, axis=0)
|
||||
pc = pc - centroid
|
||||
m = np.max(np.sqrt(np.sum(pc ** 2, axis=1)))
|
||||
pc = pc / m
|
||||
return pc
|
||||
|
||||
|
||||
def translate_pointcloud(pointcloud):
|
||||
xyz1 = np.random.uniform(low=2./3., high=3./2., size=[3])
|
||||
xyz2 = np.random.uniform(low=-0.2, high=0.2, size=[3])
|
||||
|
||||
translated_pointcloud = np.add(np.multiply(pointcloud, xyz1), xyz2).astype('float32')
|
||||
return translated_pointcloud
|
||||
|
||||
|
||||
def jitter_pointcloud(pointcloud, sigma=0.01, clip=0.02):
|
||||
N, C = pointcloud.shape
|
||||
pointcloud += np.clip(sigma * np.random.randn(N, C), -1*clip, clip)
|
||||
return pointcloud
|
||||
|
||||
|
||||
# =========== ModelNet40 =================
|
||||
class ModelNet40(Dataset):
|
||||
def __init__(self, num_points, partition='train'):
|
||||
self.data, self.label = load_data(partition)
|
||||
self.num_points = num_points
|
||||
self.partition = partition # Here the new given partition will cover the 'train'
|
||||
|
||||
def __getitem__(self, item): # indice of the pts or label
|
||||
pointcloud = self.data[item][:self.num_points]
|
||||
label = self.label[item]
|
||||
if self.partition == 'train':
|
||||
# pointcloud = pc_normalize(pointcloud) # you can try to add it or not to train our model
|
||||
pointcloud = translate_pointcloud(pointcloud)
|
||||
np.random.shuffle(pointcloud) # shuffle the order of pts
|
||||
return pointcloud, label
|
||||
|
||||
def __len__(self):
|
||||
return self.data.shape[0]
|
||||
|
||||
|
||||
# =========== ShapeNet Part =================
|
||||
class PartNormalDataset(Dataset):
|
||||
def __init__(self, npoints=2500, split='train', normalize=False):
|
||||
self.npoints = npoints
|
||||
self.root = './data/shapenetcore_partanno_segmentation_benchmark_v0_normal'
|
||||
self.catfile = os.path.join(self.root, 'synsetoffset2category.txt')
|
||||
self.cat = {}
|
||||
self.normalize = normalize
|
||||
|
||||
with open(self.catfile, 'r') as f:
|
||||
for line in f:
|
||||
ls = line.strip().split()
|
||||
self.cat[ls[0]] = ls[1]
|
||||
self.cat = {k: v for k, v in self.cat.items()}
|
||||
|
||||
self.meta = {}
|
||||
with open(os.path.join(self.root, 'train_test_split', 'shuffled_train_file_list.json'), 'r') as f:
|
||||
train_ids = set([str(d.split('/')[2]) for d in json.load(f)])
|
||||
with open(os.path.join(self.root, 'train_test_split', 'shuffled_val_file_list.json'), 'r') as f:
|
||||
val_ids = set([str(d.split('/')[2]) for d in json.load(f)])
|
||||
with open(os.path.join(self.root, 'train_test_split', 'shuffled_test_file_list.json'), 'r') as f:
|
||||
test_ids = set([str(d.split('/')[2]) for d in json.load(f)])
|
||||
for item in self.cat:
|
||||
self.meta[item] = []
|
||||
dir_point = os.path.join(self.root, self.cat[item])
|
||||
fns = sorted(os.listdir(dir_point))
|
||||
|
||||
if split == 'trainval':
|
||||
fns = [fn for fn in fns if ((fn[0:-4] in train_ids) or (fn[0:-4] in val_ids))]
|
||||
elif split == 'train':
|
||||
fns = [fn for fn in fns if fn[0:-4] in train_ids]
|
||||
elif split == 'val':
|
||||
fns = [fn for fn in fns if fn[0:-4] in val_ids]
|
||||
elif split == 'test':
|
||||
fns = [fn for fn in fns if fn[0:-4] in test_ids]
|
||||
else:
|
||||
print('Unknown split: %s. Exiting..' % (split))
|
||||
exit(-1)
|
||||
|
||||
for fn in fns:
|
||||
token = (os.path.splitext(os.path.basename(fn))[0])
|
||||
self.meta[item].append(os.path.join(dir_point, token + '.txt'))
|
||||
|
||||
self.datapath = []
|
||||
for item in self.cat:
|
||||
for fn in self.meta[item]:
|
||||
self.datapath.append((item, fn))
|
||||
|
||||
self.classes = dict(zip(self.cat, range(len(self.cat))))
|
||||
# Mapping from category ('Chair') to a list of int [10,11,12,13] as segmentation labels
|
||||
self.seg_classes = {'Earphone': [16, 17, 18], 'Motorbike': [30, 31, 32, 33, 34, 35], 'Rocket': [41, 42, 43],
|
||||
'Car': [8, 9, 10, 11], 'Laptop': [28, 29], 'Cap': [6, 7], 'Skateboard': [44, 45, 46],
|
||||
'Mug': [36, 37], 'Guitar': [19, 20, 21], 'Bag': [4, 5], 'Lamp': [24, 25, 26, 27],
|
||||
'Table': [47, 48, 49], 'Airplane': [0, 1, 2, 3], 'Pistol': [38, 39, 40],
|
||||
'Chair': [12, 13, 14, 15], 'Knife': [22, 23]}
|
||||
|
||||
self.cache = {} # from index to (point_set, cls, seg) tuple
|
||||
self.cache_size = 20000
|
||||
|
||||
def __getitem__(self, index):
|
||||
if index in self.cache:
|
||||
point_set, normal, seg, cls = self.cache[index]
|
||||
else:
|
||||
fn = self.datapath[index]
|
||||
cat = self.datapath[index][0]
|
||||
cls = self.classes[cat]
|
||||
cls = np.array([cls]).astype(np.int32)
|
||||
data = np.loadtxt(fn[1]).astype(np.float32)
|
||||
point_set = data[:, 0:3]
|
||||
normal = data[:, 3:6]
|
||||
seg = data[:, -1].astype(np.int32)
|
||||
if len(self.cache) < self.cache_size:
|
||||
self.cache[index] = (point_set, normal, seg, cls)
|
||||
|
||||
if self.normalize:
|
||||
point_set = pc_normalize(point_set)
|
||||
|
||||
choice = np.random.choice(len(seg), self.npoints, replace=True)
|
||||
|
||||
# resample
|
||||
# note that the number of points in some points clouds is less than 2048, thus use random.choice
|
||||
# remember to use the same seed during train and test for a getting stable result
|
||||
point_set = point_set[choice, :]
|
||||
seg = seg[choice]
|
||||
normal = normal[choice, :]
|
||||
|
||||
return point_set, cls, seg, normal
|
||||
|
||||
def __len__(self):
|
||||
return len(self.datapath)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
train = PartNormalDataset(npoints=2048, split='trainval', normalize=False)
|
||||
test = PartNormalDataset(npoints=2048, split='test', normalize=False)
|
||||
for data, label, _, _ in train:
|
||||
print(data.shape)
|
||||
print(label.shape)
|
69
part_segmentation/util/util.py
Executable file
69
part_segmentation/util/util.py
Executable file
|
@ -0,0 +1,69 @@
|
|||
import numpy as np
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
|
||||
|
||||
def cal_loss(pred, gold, smoothing=True):
|
||||
''' Calculate cross entropy loss, apply label smoothing if needed. '''
|
||||
|
||||
gold = gold.contiguous().view(-1) # gold is the groudtruth label in the dataloader
|
||||
|
||||
if smoothing:
|
||||
eps = 0.2
|
||||
n_class = pred.size(1) # the number of feature_dim of the ouput, which is output channels
|
||||
|
||||
one_hot = torch.zeros_like(pred).scatter(1, gold.view(-1, 1), 1)
|
||||
one_hot = one_hot * (1 - eps) + (1 - one_hot) * eps / (n_class - 1)
|
||||
log_prb = F.log_softmax(pred, dim=1)
|
||||
|
||||
loss = -(one_hot * log_prb).sum(dim=1).mean()
|
||||
else:
|
||||
loss = F.cross_entropy(pred, gold, reduction='mean')
|
||||
|
||||
return loss
|
||||
|
||||
|
||||
# create a file and write the text into it:
|
||||
class IOStream():
|
||||
def __init__(self, path):
|
||||
self.f = open(path, 'a')
|
||||
|
||||
def cprint(self, text):
|
||||
print(text)
|
||||
self.f.write(text+'\n')
|
||||
self.f.flush()
|
||||
|
||||
def close(self):
|
||||
self.f.close()
|
||||
|
||||
|
||||
def to_categorical(y, num_classes):
|
||||
""" 1-hot encodes a tensor """
|
||||
new_y = torch.eye(num_classes)[y.cpu().data.numpy(),]
|
||||
if (y.is_cuda):
|
||||
return new_y.cuda(non_blocking=True)
|
||||
return new_y
|
||||
|
||||
|
||||
def compute_overall_iou(pred, target, num_classes):
|
||||
shape_ious = []
|
||||
pred = pred.max(dim=2)[1] # (batch_size, num_points) the pred_class_idx of each point in each sample
|
||||
pred_np = pred.cpu().data.numpy()
|
||||
|
||||
target_np = target.cpu().data.numpy()
|
||||
for shape_idx in range(pred.size(0)): # sample_idx
|
||||
part_ious = []
|
||||
for part in range(num_classes): # class_idx! no matter which category, only consider all part_classes of all categories, check all 50 classes
|
||||
# for target, each point has a class no matter which category owns this point! also 50 classes!!!
|
||||
# only return 1 when both belongs to this class, which means correct:
|
||||
I = np.sum(np.logical_and(pred_np[shape_idx] == part, target_np[shape_idx] == part))
|
||||
# always return 1 when either is belongs to this class:
|
||||
U = np.sum(np.logical_or(pred_np[shape_idx] == part, target_np[shape_idx] == part))
|
||||
|
||||
F = np.sum(target_np[shape_idx] == part)
|
||||
|
||||
if F != 0:
|
||||
iou = I / float(U) # iou across all points for this class
|
||||
part_ious.append(iou) # append the iou of this class
|
||||
shape_ious.append(np.mean(part_ious)) # each time append an average iou across all classes of this sample (sample_level!)
|
||||
return shape_ious # [batch_size]
|
Loading…
Reference in a new issue