import glob import os import h5py import numpy as np from torch.utils.data import Dataset os.environ["HDF5_USE_FILE_LOCKING"] = "FALSE" def download(): BASE_DIR = os.path.dirname(os.path.abspath(__file__)) DATA_DIR = os.path.join(BASE_DIR, "data") if not os.path.exists(DATA_DIR): os.mkdir(DATA_DIR) if not os.path.exists(os.path.join(DATA_DIR, "modelnet40_ply_hdf5_2048")): www = "https://shapenet.cs.stanford.edu/media/modelnet40_ply_hdf5_2048.zip" zipfile = os.path.basename(www) os.system(f"wget {www} --no-check-certificate; unzip {zipfile}") os.system(f"mv {zipfile[:-4]} {DATA_DIR}") os.system("rm %s" % (zipfile)) def load_data(partition): download() BASE_DIR = os.path.dirname(os.path.abspath(__file__)) DATA_DIR = os.path.join(BASE_DIR, "data") all_data = [] all_label = [] for h5_name in glob.glob(os.path.join(DATA_DIR, "modelnet40_ply_hdf5_2048", "ply_data_%s*.h5" % partition)): # print(f"h5_name: {h5_name}") f = h5py.File(h5_name, "r") data = f["data"][:].astype("float32") label = f["label"][:].astype("int64") f.close() all_data.append(data) all_label.append(label) all_data = np.concatenate(all_data, axis=0) all_label = np.concatenate(all_label, axis=0) return all_data, all_label def random_point_dropout(pc, max_dropout_ratio=0.875): """batch_pc: BxNx3.""" # for b in range(batch_pc.shape[0]): dropout_ratio = np.random.random() * max_dropout_ratio # 0~0.875 drop_idx = np.where(np.random.random(pc.shape[0]) <= dropout_ratio)[0] # print ('use random drop', len(drop_idx)) if len(drop_idx) > 0: pc[drop_idx, :] = pc[0, :] # set to the first point return pc def translate_pointcloud(pointcloud): xyz1 = np.random.uniform(low=2.0 / 3.0, high=3.0 / 2.0, size=[3]) xyz2 = np.random.uniform(low=-0.2, high=0.2, size=[3]) return np.add(np.multiply(pointcloud, xyz1), xyz2).astype("float32") def jitter_pointcloud(pointcloud, sigma=0.01, clip=0.02): N, C = pointcloud.shape pointcloud += np.clip(sigma * np.random.randn(N, C), -1 * clip, clip) return pointcloud class ModelNet40(Dataset): def __init__(self, num_points, partition="train"): self.data, self.label = load_data(partition) self.num_points = num_points self.partition = partition def __getitem__(self, item): pointcloud = self.data[item][: self.num_points] label = self.label[item] if self.partition == "train": # pointcloud = random_point_dropout(pointcloud) # open for dgcnn not for our idea for all pointcloud = translate_pointcloud(pointcloud) np.random.shuffle(pointcloud) return pointcloud, label def __len__(self): return self.data.shape[0] if __name__ == "__main__": train = ModelNet40(1024) test = ModelNet40(1024, "test") # for data, label in train: # print(data.shape) # print(label.shape) from torch.utils.data import DataLoader train_loader = DataLoader( ModelNet40(partition="train", num_points=1024), num_workers=4, batch_size=32, shuffle=True, drop_last=True, ) for batch_idx, (data, label) in enumerate(train_loader): print(f"batch_idx: {batch_idx} | data shape: {data.shape} | ;lable shape: {label.shape}") train_set = ModelNet40(partition="train", num_points=1024) test_set = ModelNet40(partition="test", num_points=1024) print(f"train_set size {train_set.__len__()}") print(f"test_set size {test_set.__len__()}")