import numpy as np import torch import torch.nn.functional as F def cal_loss(pred, gold, smoothing=True): """Calculate cross entropy loss, apply label smoothing if needed.""" gold = gold.contiguous().view(-1) # gold is the groudtruth label in the dataloader if smoothing: eps = 0.2 n_class = pred.size(1) # the number of feature_dim of the ouput, which is output channels one_hot = torch.zeros_like(pred).scatter(1, gold.view(-1, 1), 1) one_hot = one_hot * (1 - eps) + (1 - one_hot) * eps / (n_class - 1) log_prb = F.log_softmax(pred, dim=1) loss = -(one_hot * log_prb).sum(dim=1).mean() else: loss = F.cross_entropy(pred, gold, reduction="mean") return loss # create a file and write the text into it: class IOStream: def __init__(self, path): self.f = open(path, "a") def cprint(self, text): print(text) self.f.write(text + "\n") self.f.flush() def close(self): self.f.close() def to_categorical(y, num_classes): """1-hot encodes a tensor.""" new_y = torch.eye(num_classes)[y.cpu().data.numpy(),] if y.is_cuda: return new_y.cuda(non_blocking=True) return new_y def compute_overall_iou(pred, target, num_classes): shape_ious = [] pred = pred.max(dim=2)[1] # (batch_size, num_points) the pred_class_idx of each point in each sample pred_np = pred.cpu().data.numpy() target_np = target.cpu().data.numpy() for shape_idx in range(pred.size(0)): # sample_idx part_ious = [] for part in range( num_classes, ): # class_idx! no matter which category, only consider all part_classes of all categories, check all 50 classes # for target, each point has a class no matter which category owns this point! also 50 classes!!! # only return 1 when both belongs to this class, which means correct: I = np.sum(np.logical_and(pred_np[shape_idx] == part, target_np[shape_idx] == part)) # always return 1 when either is belongs to this class: U = np.sum(np.logical_or(pred_np[shape_idx] == part, target_np[shape_idx] == part)) F = np.sum(target_np[shape_idx] == part) if F != 0: iou = I / float(U) # iou across all points for this class part_ious.append(iou) # append the iou of this class shape_ious.append( np.mean(part_ious), ) # each time append an average iou across all classes of this sample (sample_level!) return shape_ious # [batch_size]