""" @Author: Yue Wang @Contact: yuewangx@mit.edu @File: util @Time: 4/5/19 3:47 PM """ import numpy as np import torch import torch.nn.functional as F def cal_loss(pred, gold, smoothing=True): ''' Calculate cross entropy loss, apply label smoothing if needed. ''' gold = gold.contiguous().view(-1) if smoothing: eps = 0.2 n_class = pred.size(1) one_hot = torch.zeros_like(pred).scatter(1, gold.view(-1, 1), 1) one_hot = one_hot * (1 - eps) + (1 - one_hot) * eps / (n_class - 1) log_prb = F.log_softmax(pred, dim=1) loss = -(one_hot * log_prb).sum(dim=1).mean() else: loss = F.cross_entropy(pred, gold, reduction='mean') return loss class IOStream(): def __init__(self, path): self.f = open(path, 'a') def cprint(self, text): print(text) self.f.write(text+'\n') self.f.flush() def close(self): self.f.close()