import argparse import os import logging import datetime import torch import torch.nn.parallel import torch.backends.cudnn as cudnn import torch.optim import torch.utils.data import torch.utils.data.distributed from torch.utils.data import DataLoader import models as models from utils import Logger, mkdir_p, progress_bar, save_model, save_args, cal_loss from data import ModelNet40 from torch.optim.lr_scheduler import CosineAnnealingLR import sklearn.metrics as metrics import numpy as np def parse_args(): """Parameters""" parser = argparse.ArgumentParser('training') parser.add_argument('-c', '--checkpoint', type=str, metavar='PATH', help='path to save checkpoint (default: checkpoint)') parser.add_argument('--msg', type=str, help='message after checkpoint') parser.add_argument('--batch_size', type=int, default=32, help='batch size in training') parser.add_argument('--model', default='PointNet', help='model name [default: pointnet_cls]') parser.add_argument('--epoch', default=300, type=int, help='number of epoch in training') parser.add_argument('--num_points', type=int, default=1024, help='Point Number') parser.add_argument('--learning_rate', default=0.1, type=float, help='learning rate in training') parser.add_argument('--weight_decay', type=float, default=2e-4, help='decay rate') parser.add_argument('--seed', type=int, help='random seed') parser.add_argument('--workers', default=8, type=int, help='workers') return parser.parse_args() def main(): args = parse_args() if args.seed is None: args.seed = np.random.randint(1, 10000) os.environ["HDF5_USE_FILE_LOCKING"] = "FALSE" assert torch.cuda.is_available(), "Please ensure codes are executed in cuda." device = 'cuda' if args.seed is not None: torch.manual_seed(args.seed) np.random.seed(args.seed) torch.cuda.manual_seed_all(args.seed) torch.cuda.manual_seed(args.seed) torch.set_printoptions(10) torch.backends.cudnn.benchmark = False torch.backends.cudnn.deterministic = True os.environ['PYTHONHASHSEED'] = str(args.seed) time_str = str(datetime.datetime.now().strftime('-%Y%m%d%H%M%S')) if args.msg is None: message = time_str else: message = "-" + args.msg args.checkpoint = 'checkpoints/' + args.model + message + '-' + str(args.seed) if not os.path.isdir(args.checkpoint): mkdir_p(args.checkpoint) screen_logger = logging.getLogger("Model") screen_logger.setLevel(logging.INFO) formatter = logging.Formatter('%(message)s') file_handler = logging.FileHandler(os.path.join(args.checkpoint, "out.txt")) file_handler.setLevel(logging.INFO) file_handler.setFormatter(formatter) screen_logger.addHandler(file_handler) def printf(str): screen_logger.info(str) print(str) # Model printf(f"args: {args}") printf('==> Building model..') net = models.__dict__[args.model]() criterion = cal_loss net = net.to(device) # criterion = criterion.to(device) if device == 'cuda': net = torch.nn.DataParallel(net) cudnn.benchmark = True best_test_acc = 0. # best test accuracy best_train_acc = 0. best_test_acc_avg = 0. best_train_acc_avg = 0. best_test_loss = float("inf") best_train_loss = float("inf") start_epoch = 0 # start from epoch 0 or last checkpoint epoch optimizer_dict = None if not os.path.isfile(os.path.join(args.checkpoint, "last_checkpoint.pth")): save_args(args) logger = Logger(os.path.join(args.checkpoint, 'log.txt'), title="ModelNet" + args.model) logger.set_names(["Epoch-Num", 'Learning-Rate', 'Train-Loss', 'Train-acc-B', 'Train-acc', 'Valid-Loss', 'Valid-acc-B', 'Valid-acc']) else: printf(f"Resuming last checkpoint from {args.checkpoint}") checkpoint_path = os.path.join(args.checkpoint, "last_checkpoint.pth") checkpoint = torch.load(checkpoint_path) net.load_state_dict(checkpoint['net']) start_epoch = checkpoint['epoch'] best_test_acc = checkpoint['best_test_acc'] best_train_acc = checkpoint['best_train_acc'] best_test_acc_avg = checkpoint['best_test_acc_avg'] best_train_acc_avg = checkpoint['best_train_acc_avg'] best_test_loss = checkpoint['best_test_loss'] best_train_loss = checkpoint['best_train_loss'] logger = Logger(os.path.join(args.checkpoint, 'log.txt'), title="ModelNet" + args.model, resume=True) optimizer_dict = checkpoint['optimizer'] printf('==> Preparing data..') train_loader = DataLoader(ModelNet40(partition='train', num_points=args.num_points), num_workers=args.workers, batch_size=args.batch_size, shuffle=True, drop_last=True) test_loader = DataLoader(ModelNet40(partition='test', num_points=args.num_points), num_workers=args.workers, batch_size=args.batch_size // 2, shuffle=False, drop_last=False) optimizer = torch.optim.SGD(net.parameters(), lr=args.learning_rate, momentum=0.9, weight_decay=args.weight_decay) if optimizer_dict is not None: optimizer.load_state_dict(optimizer_dict) scheduler = CosineAnnealingLR(optimizer, args.epoch, eta_min=1e-3, last_epoch=start_epoch - 1) for epoch in range(start_epoch, args.epoch): printf('Epoch(%d/%s) Learning Rate %s:' % (epoch + 1, args.epoch, optimizer.param_groups[0]['lr'])) train_out = train(net, train_loader, optimizer, criterion, device) # {"loss", "acc", "acc_avg", "time"} test_out = validate(net, test_loader, criterion, device) scheduler.step() if test_out["acc"] > best_test_acc: best_test_acc = test_out["acc"] is_best = True else: is_best = False best_test_acc = test_out["acc"] if (test_out["acc"] > best_test_acc) else best_test_acc best_train_acc = train_out["acc"] if (train_out["acc"] > best_train_acc) else best_train_acc best_test_acc_avg = test_out["acc_avg"] if (test_out["acc_avg"] > best_test_acc_avg) else best_test_acc_avg best_train_acc_avg = train_out["acc_avg"] if (train_out["acc_avg"] > best_train_acc_avg) else best_train_acc_avg best_test_loss = test_out["loss"] if (test_out["loss"] < best_test_loss) else best_test_loss best_train_loss = train_out["loss"] if (train_out["loss"] < best_train_loss) else best_train_loss save_model( net, epoch, path=args.checkpoint, acc=test_out["acc"], is_best=is_best, best_test_acc=best_test_acc, # best test accuracy best_train_acc=best_train_acc, best_test_acc_avg=best_test_acc_avg, best_train_acc_avg=best_train_acc_avg, best_test_loss=best_test_loss, best_train_loss=best_train_loss, optimizer=optimizer.state_dict() ) logger.append([epoch, optimizer.param_groups[0]['lr'], train_out["loss"], train_out["acc_avg"], train_out["acc"], test_out["loss"], test_out["acc_avg"], test_out["acc"]]) printf( f"Training loss:{train_out['loss']} acc_avg:{train_out['acc_avg']}% acc:{train_out['acc']}% time:{train_out['time']}s") printf( f"Testing loss:{test_out['loss']} acc_avg:{test_out['acc_avg']}% " f"acc:{test_out['acc']}% time:{test_out['time']}s [best test acc: {best_test_acc}%] \n\n") logger.close() printf(f"++++++++" * 2 + "Final results" + "++++++++" * 2) printf(f"++ Last Train time: {train_out['time']} | Last Test time: {test_out['time']} ++") printf(f"++ Best Train loss: {best_train_loss} | Best Test loss: {best_test_loss} ++") printf(f"++ Best Train acc_B: {best_train_acc_avg} | Best Test acc_B: {best_test_acc_avg} ++") printf(f"++ Best Train acc: {best_train_acc} | Best Test acc: {best_test_acc} ++") printf(f"++++++++" * 5) def train(net, trainloader, optimizer, criterion, device): net.train() train_loss = 0 correct = 0 total = 0 train_pred = [] train_true = [] time_cost = datetime.datetime.now() for batch_idx, (data, label) in enumerate(trainloader): data, label = data.to(device), label.to(device).squeeze() data = data.permute(0, 2, 1) # so, the input data shape is [batch, 3, 1024] optimizer.zero_grad() logits = net(data) loss = criterion(logits, label) loss.backward() torch.nn.utils.clip_grad_norm_(net.parameters(), 1) optimizer.step() train_loss += loss.item() preds = logits.max(dim=1)[1] train_true.append(label.cpu().numpy()) train_pred.append(preds.detach().cpu().numpy()) total += label.size(0) correct += preds.eq(label).sum().item() progress_bar(batch_idx, len(trainloader), 'Loss: %.3f | Acc: %.3f%% (%d/%d)' % (train_loss / (batch_idx + 1), 100. * correct / total, correct, total)) time_cost = int((datetime.datetime.now() - time_cost).total_seconds()) train_true = np.concatenate(train_true) train_pred = np.concatenate(train_pred) return { "loss": float("%.3f" % (train_loss / (batch_idx + 1))), "acc": float("%.3f" % (100. * metrics.accuracy_score(train_true, train_pred))), "acc_avg": float("%.3f" % (100. * metrics.balanced_accuracy_score(train_true, train_pred))), "time": time_cost } def validate(net, testloader, criterion, device): net.eval() test_loss = 0 correct = 0 total = 0 test_true = [] test_pred = [] time_cost = datetime.datetime.now() with torch.no_grad(): for batch_idx, (data, label) in enumerate(testloader): data, label = data.to(device), label.to(device).squeeze() data = data.permute(0, 2, 1) logits = net(data) loss = criterion(logits, label) test_loss += loss.item() preds = logits.max(dim=1)[1] test_true.append(label.cpu().numpy()) test_pred.append(preds.detach().cpu().numpy()) total += label.size(0) correct += preds.eq(label).sum().item() progress_bar(batch_idx, len(testloader), 'Loss: %.3f | Acc: %.3f%% (%d/%d)' % (test_loss / (batch_idx + 1), 100. * correct / total, correct, total)) time_cost = int((datetime.datetime.now() - time_cost).total_seconds()) test_true = np.concatenate(test_true) test_pred = np.concatenate(test_pred) return { "loss": float("%.3f" % (test_loss / (batch_idx + 1))), "acc": float("%.3f" % (100. * metrics.accuracy_score(test_true, test_pred))), "acc_avg": float("%.3f" % (100. * metrics.balanced_accuracy_score(test_true, test_pred))), "time": time_cost } if __name__ == '__main__': main()