import os import glob import h5py import numpy as np from torch.utils.data import Dataset os.environ["HDF5_USE_FILE_LOCKING"] = "FALSE" def download(): BASE_DIR = os.path.dirname(os.path.abspath(__file__)) DATA_DIR = os.path.join(BASE_DIR, 'data') if not os.path.exists(DATA_DIR): os.mkdir(DATA_DIR) if not os.path.exists(os.path.join(DATA_DIR, 'modelnet40_ply_hdf5_2048')): www = 'https://shapenet.cs.stanford.edu/media/modelnet40_ply_hdf5_2048.zip' zipfile = os.path.basename(www) os.system('wget %s --no-check-certificate; unzip %s' % (www, zipfile)) os.system('mv %s %s' % (zipfile[:-4], DATA_DIR)) os.system('rm %s' % (zipfile)) def load_data(partition): download() BASE_DIR = os.path.dirname(os.path.abspath(__file__)) DATA_DIR = os.path.join(BASE_DIR, 'data') all_data = [] all_label = [] for h5_name in glob.glob(os.path.join(DATA_DIR, 'modelnet40_ply_hdf5_2048', 'ply_data_%s*.h5'%partition)): # print(f"h5_name: {h5_name}") f = h5py.File(h5_name,'r') data = f['data'][:].astype('float32') label = f['label'][:].astype('int64') f.close() all_data.append(data) all_label.append(label) all_data = np.concatenate(all_data, axis=0) all_label = np.concatenate(all_label, axis=0) return all_data, all_label def random_point_dropout(pc, max_dropout_ratio=0.875): ''' batch_pc: BxNx3 ''' # for b in range(batch_pc.shape[0]): dropout_ratio = np.random.random()*max_dropout_ratio # 0~0.875 drop_idx = np.where(np.random.random((pc.shape[0]))<=dropout_ratio)[0] # print ('use random drop', len(drop_idx)) if len(drop_idx)>0: pc[drop_idx,:] = pc[0,:] # set to the first point return pc def translate_pointcloud(pointcloud): xyz1 = np.random.uniform(low=2./3., high=3./2., size=[3]) xyz2 = np.random.uniform(low=-0.2, high=0.2, size=[3]) translated_pointcloud = np.add(np.multiply(pointcloud, xyz1), xyz2).astype('float32') return translated_pointcloud def jitter_pointcloud(pointcloud, sigma=0.01, clip=0.02): N, C = pointcloud.shape pointcloud += np.clip(sigma * np.random.randn(N, C), -1*clip, clip) return pointcloud class ModelNet40(Dataset): def __init__(self, num_points, partition='train'): self.data, self.label = load_data(partition) self.num_points = num_points self.partition = partition def __getitem__(self, item): pointcloud = self.data[item][:self.num_points] label = self.label[item] if self.partition == 'train': # pointcloud = random_point_dropout(pointcloud) # open for dgcnn not for our idea for all pointcloud = translate_pointcloud(pointcloud) np.random.shuffle(pointcloud) return pointcloud, label def __len__(self): return self.data.shape[0] if __name__ == '__main__': train = ModelNet40(1024) test = ModelNet40(1024, 'test') # for data, label in train: # print(data.shape) # print(label.shape) from torch.utils.data import DataLoader train_loader = DataLoader(ModelNet40(partition='train', num_points=1024), num_workers=4, batch_size=32, shuffle=True, drop_last=True) for batch_idx, (data, label) in enumerate(train_loader): print(f"batch_idx: {batch_idx} | data shape: {data.shape} | ;lable shape: {label.shape}") train_set = ModelNet40(partition='train', num_points=1024) test_set = ModelNet40(partition='test', num_points=1024) print(f"train_set size {train_set.__len__()}") print(f"test_set size {test_set.__len__()}")