PointMLP/part_segmentation/main.py
2023-08-03 16:40:14 +02:00

536 lines
20 KiB
Python

import argparse
import os
import random
from collections import defaultdict
import model as models
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.autograd import Variable
from torch.optim.lr_scheduler import CosineAnnealingLR, StepLR
from torch.utils.data import DataLoader
from tqdm import tqdm
from util.data_util import PartNormalDataset
from util.util import IOStream, compute_overall_iou, to_categorical
classes_str = [
"aero",
"bag",
"cap",
"car",
"chair",
"ear",
"guitar",
"knife",
"lamp",
"lapt",
"moto",
"mug",
"Pistol",
"rock",
"stake",
"table",
]
def _init_():
if not os.path.exists("checkpoints"):
os.makedirs("checkpoints")
if not os.path.exists("checkpoints/" + args.exp_name):
os.makedirs("checkpoints/" + args.exp_name)
def weight_init(m):
if isinstance(m, torch.nn.Linear):
torch.nn.init.xavier_normal_(m.weight)
if m.bias is not None:
torch.nn.init.constant_(m.bias, 0)
elif isinstance(m, torch.nn.Conv2d):
torch.nn.init.xavier_normal_(m.weight)
if m.bias is not None:
torch.nn.init.constant_(m.bias, 0)
elif isinstance(m, torch.nn.Conv1d):
torch.nn.init.xavier_normal_(m.weight)
if m.bias is not None:
torch.nn.init.constant_(m.bias, 0)
elif isinstance(m, torch.nn.BatchNorm2d):
torch.nn.init.constant_(m.weight, 1)
torch.nn.init.constant_(m.bias, 0)
elif isinstance(m, torch.nn.BatchNorm1d):
torch.nn.init.constant_(m.weight, 1)
torch.nn.init.constant_(m.bias, 0)
def train(args, io):
# ============= Model ===================
num_part = 50
device = torch.device("cuda" if args.cuda else "cpu")
model = models.__dict__[args.model](num_part).to(device)
io.cprint(str(model))
model.apply(weight_init)
model = nn.DataParallel(model)
print("Let's use", torch.cuda.device_count(), "GPUs!")
"""Resume or not"""
if args.resume:
state_dict = torch.load(
"checkpoints/%s/best_insiou_model.pth" % args.exp_name,
map_location=torch.device("cpu"),
)["model"]
for k in state_dict.keys():
if "module" not in k:
from collections import OrderedDict
new_state_dict = OrderedDict()
for k in state_dict:
new_state_dict["module." + k] = state_dict[k]
state_dict = new_state_dict
break
model.load_state_dict(state_dict)
print("Resume training model...")
print(torch.load("checkpoints/%s/best_insiou_model.pth" % args.exp_name).keys())
else:
print("Training from scratch...")
# =========== Dataloader =================
train_data = PartNormalDataset(npoints=2048, split="trainval", normalize=False)
print("The number of training data is:%d", len(train_data))
test_data = PartNormalDataset(npoints=2048, split="test", normalize=False)
print("The number of test data is:%d", len(test_data))
train_loader = DataLoader(
train_data,
batch_size=args.batch_size,
shuffle=True,
num_workers=args.workers,
drop_last=True,
)
test_loader = DataLoader(
test_data,
batch_size=args.test_batch_size,
shuffle=False,
num_workers=args.workers,
drop_last=False,
)
# ============= Optimizer ================
if args.use_sgd:
print("Use SGD")
opt = optim.SGD(model.parameters(), lr=args.lr * 100, momentum=args.momentum, weight_decay=0)
else:
print("Use Adam")
opt = optim.Adam(model.parameters(), lr=args.lr, betas=(0.9, 0.999), eps=1e-08, weight_decay=0)
if args.scheduler == "cos":
print("Use CosLR")
scheduler = CosineAnnealingLR(opt, args.epochs, eta_min=args.lr if args.use_sgd else args.lr / 100)
else:
print("Use StepLR")
scheduler = StepLR(opt, step_size=args.step, gamma=0.5)
# ============= Training =================
best_acc = 0
best_class_iou = 0
best_instance_iou = 0
num_part = 50
num_classes = 16
for epoch in range(args.epochs):
train_epoch(train_loader, model, opt, scheduler, epoch, num_part, num_classes, io)
test_metrics, total_per_cat_iou = test_epoch(test_loader, model, epoch, num_part, num_classes, io)
# 1. when get the best accuracy, save the model:
if test_metrics["accuracy"] > best_acc:
best_acc = test_metrics["accuracy"]
io.cprint("Max Acc:%.5f" % best_acc)
state = {
"model": model.module.state_dict() if torch.cuda.device_count() > 1 else model.state_dict(),
"optimizer": opt.state_dict(),
"epoch": epoch,
"test_acc": best_acc,
}
torch.save(state, "checkpoints/%s/best_acc_model.pth" % args.exp_name)
# 2. when get the best instance_iou, save the model:
if test_metrics["shape_avg_iou"] > best_instance_iou:
best_instance_iou = test_metrics["shape_avg_iou"]
io.cprint("Max instance iou:%.5f" % best_instance_iou)
state = {
"model": model.module.state_dict() if torch.cuda.device_count() > 1 else model.state_dict(),
"optimizer": opt.state_dict(),
"epoch": epoch,
"test_instance_iou": best_instance_iou,
}
torch.save(state, "checkpoints/%s/best_insiou_model.pth" % args.exp_name)
# 3. when get the best class_iou, save the model:
# first we need to calculate the average per-class iou
class_iou = 0
for cat_idx in range(16):
class_iou += total_per_cat_iou[cat_idx]
avg_class_iou = class_iou / 16
if avg_class_iou > best_class_iou:
best_class_iou = avg_class_iou
# print the iou of each class:
for cat_idx in range(16):
io.cprint(classes_str[cat_idx] + " iou: " + str(total_per_cat_iou[cat_idx]))
io.cprint("Max class iou:%.5f" % best_class_iou)
state = {
"model": model.module.state_dict() if torch.cuda.device_count() > 1 else model.state_dict(),
"optimizer": opt.state_dict(),
"epoch": epoch,
"test_class_iou": best_class_iou,
}
torch.save(state, "checkpoints/%s/best_clsiou_model.pth" % args.exp_name)
# report best acc, ins_iou, cls_iou
io.cprint("Final Max Acc:%.5f" % best_acc)
io.cprint("Final Max instance iou:%.5f" % best_instance_iou)
io.cprint("Final Max class iou:%.5f" % best_class_iou)
# save last model
state = {
"model": model.module.state_dict() if torch.cuda.device_count() > 1 else model.state_dict(),
"optimizer": opt.state_dict(),
"epoch": args.epochs - 1,
"test_iou": best_instance_iou,
}
torch.save(state, "checkpoints/%s/model_ep%d.pth" % (args.exp_name, args.epochs))
def train_epoch(train_loader, model, opt, scheduler, epoch, num_part, num_classes, io):
train_loss = 0.0
count = 0.0
accuracy = []
shape_ious = 0.0
metrics = defaultdict(lambda: list())
model.train()
for _batch_id, (points, label, target, norm_plt) in tqdm(
enumerate(train_loader),
total=len(train_loader),
smoothing=0.9,
):
batch_size, num_point, _ = points.size()
points, label, target, norm_plt = (
Variable(points.float()),
Variable(label.long()),
Variable(target.long()),
Variable(norm_plt.float()),
)
points = points.transpose(2, 1)
norm_plt = norm_plt.transpose(2, 1)
points, label, target, norm_plt = (
points.cuda(non_blocking=True),
label.squeeze(1).cuda(non_blocking=True),
target.cuda(non_blocking=True),
norm_plt.cuda(non_blocking=True),
)
# target: b,n
seg_pred = model(points, norm_plt, to_categorical(label, num_classes)) # seg_pred: b,n,50
loss = F.nll_loss(seg_pred.contiguous().view(-1, num_part), target.view(-1, 1)[:, 0])
# instance iou without considering the class average at each batch_size:
batch_shapeious = compute_overall_iou(
seg_pred,
target,
num_part,
) # list of of current batch_iou:[iou1,iou2,...,iou#b_size]
# total iou of current batch in each process:
batch_shapeious = seg_pred.new_tensor(
[np.sum(batch_shapeious)],
dtype=torch.float64,
) # same device with seg_pred!!!
# Loss backward
loss = torch.mean(loss)
opt.zero_grad()
loss.backward()
opt.step()
# accuracy
seg_pred = seg_pred.contiguous().view(-1, num_part) # b*n,50
target = target.view(-1, 1)[:, 0] # b*n
pred_choice = seg_pred.contiguous().data.max(1)[1] # b*n
correct = pred_choice.eq(target.contiguous().data).sum() # torch.int64: total number of correct-predict pts
# sum
shape_ious += batch_shapeious.item() # count the sum of ious in each iteration
count += batch_size # count the total number of samples in each iteration
train_loss += loss.item() * batch_size
accuracy.append(correct.item() / (batch_size * num_point)) # append the accuracy of each iteration
# Note: We do not need to calculate per_class iou during training
if args.scheduler == "cos":
scheduler.step()
elif args.scheduler == "step":
if opt.param_groups[0]["lr"] > 0.9e-5:
scheduler.step()
if opt.param_groups[0]["lr"] < 0.9e-5:
for param_group in opt.param_groups:
param_group["lr"] = 0.9e-5
io.cprint("Learning rate: %f" % opt.param_groups[0]["lr"])
metrics["accuracy"] = np.mean(accuracy)
metrics["shape_avg_iou"] = shape_ious * 1.0 / count
outstr = "Train %d, loss: %f, train acc: %f, train ins_iou: %f" % (
epoch + 1,
train_loss * 1.0 / count,
metrics["accuracy"],
metrics["shape_avg_iou"],
)
io.cprint(outstr)
def test_epoch(test_loader, model, epoch, num_part, num_classes, io):
test_loss = 0.0
count = 0.0
accuracy = []
shape_ious = 0.0
final_total_per_cat_iou = np.zeros(16).astype(np.float32)
final_total_per_cat_seen = np.zeros(16).astype(np.int32)
metrics = defaultdict(lambda: list())
model.eval()
# label_size: b, means each sample has one corresponding class
for _batch_id, (points, label, target, norm_plt) in tqdm(
enumerate(test_loader),
total=len(test_loader),
smoothing=0.9,
):
batch_size, num_point, _ = points.size()
points, label, target, norm_plt = (
Variable(points.float()),
Variable(label.long()),
Variable(target.long()),
Variable(norm_plt.float()),
)
points = points.transpose(2, 1)
norm_plt = norm_plt.transpose(2, 1)
points, label, target, norm_plt = (
points.cuda(non_blocking=True),
label.squeeze(1).cuda(non_blocking=True),
target.cuda(non_blocking=True),
norm_plt.cuda(non_blocking=True),
)
seg_pred = model(points, norm_plt, to_categorical(label, num_classes)) # b,n,50
# instance iou without considering the class average at each batch_size:
batch_shapeious = compute_overall_iou(seg_pred, target, num_part) # [b]
# per category iou at each batch_size:
for shape_idx in range(seg_pred.size(0)): # sample_idx
cur_gt_label = label[shape_idx] # label[sample_idx], denotes current sample belongs to which cat
final_total_per_cat_iou[cur_gt_label] += batch_shapeious[shape_idx] # add the iou belongs to this cat
final_total_per_cat_seen[cur_gt_label] += 1 # count the number of this cat is chosen
# total iou of current batch in each process:
batch_ious = seg_pred.new_tensor([np.sum(batch_shapeious)], dtype=torch.float64) # same device with seg_pred!!!
# prepare seg_pred and target for later calculating loss and acc:
seg_pred = seg_pred.contiguous().view(-1, num_part)
target = target.view(-1, 1)[:, 0]
# Loss
loss = F.nll_loss(seg_pred.contiguous(), target.contiguous())
# accuracy:
pred_choice = seg_pred.data.max(1)[1] # b*n
correct = pred_choice.eq(target.data).sum() # torch.int64: total number of correct-predict pts
loss = torch.mean(loss)
shape_ious += batch_ious.item() # count the sum of ious in each iteration
count += batch_size # count the total number of samples in each iteration
test_loss += loss.item() * batch_size
accuracy.append(correct.item() / (batch_size * num_point)) # append the accuracy of each iteration
for cat_idx in range(16):
if final_total_per_cat_seen[cat_idx] > 0: # indicating this cat is included during previous iou appending
final_total_per_cat_iou[cat_idx] = (
final_total_per_cat_iou[cat_idx] / final_total_per_cat_seen[cat_idx]
) # avg class iou across all samples
metrics["accuracy"] = np.mean(accuracy)
metrics["shape_avg_iou"] = shape_ious * 1.0 / count
outstr = "Test %d, loss: %f, test acc: %f test ins_iou: %f" % (
epoch + 1,
test_loss * 1.0 / count,
metrics["accuracy"],
metrics["shape_avg_iou"],
)
io.cprint(outstr)
return metrics, final_total_per_cat_iou
def test(args, io):
# Dataloader
test_data = PartNormalDataset(npoints=2048, split="test", normalize=False)
print("The number of test data is:%d", len(test_data))
test_loader = DataLoader(
test_data,
batch_size=args.test_batch_size,
shuffle=False,
num_workers=args.workers,
drop_last=False,
)
# Try to load models
num_part = 50
device = torch.device("cuda" if args.cuda else "cpu")
model = models.__dict__[args.model](num_part).to(device)
io.cprint(str(model))
from collections import OrderedDict
state_dict = torch.load(
f"checkpoints/{args.exp_name}/best_{args.model_type}_model.pth",
map_location=torch.device("cpu"),
)["model"]
new_state_dict = OrderedDict()
for layer in state_dict:
new_state_dict[layer.replace("module.", "")] = state_dict[layer]
model.load_state_dict(new_state_dict)
model.eval()
num_part = 50
num_classes = 16
metrics = defaultdict(lambda: list())
hist_acc = []
shape_ious = []
total_per_cat_iou = np.zeros(16).astype(np.float32)
total_per_cat_seen = np.zeros(16).astype(np.int32)
for _batch_id, (points, label, target, norm_plt) in tqdm(
enumerate(test_loader),
total=len(test_loader),
smoothing=0.9,
):
batch_size, num_point, _ = points.size()
points, label, target, norm_plt = (
Variable(points.float()),
Variable(label.long()),
Variable(target.long()),
Variable(norm_plt.float()),
)
points = points.transpose(2, 1)
norm_plt = norm_plt.transpose(2, 1)
points, label, target, norm_plt = (
points.cuda(non_blocking=True),
label.squeeze().cuda(non_blocking=True),
target.cuda(non_blocking=True),
norm_plt.cuda(non_blocking=True),
)
with torch.no_grad():
seg_pred = model(points, norm_plt, to_categorical(label, num_classes)) # b,n,50
# instance iou without considering the class average at each batch_size:
batch_shapeious = compute_overall_iou(seg_pred, target, num_part) # [b]
shape_ious += batch_shapeious # iou +=, equals to .append
# per category iou at each batch_size:
for shape_idx in range(seg_pred.size(0)): # sample_idx
cur_gt_label = label[shape_idx] # label[sample_idx]
total_per_cat_iou[cur_gt_label] += batch_shapeious[shape_idx]
total_per_cat_seen[cur_gt_label] += 1
# accuracy:
seg_pred = seg_pred.contiguous().view(-1, num_part)
target = target.view(-1, 1)[:, 0]
pred_choice = seg_pred.data.max(1)[1]
correct = pred_choice.eq(target.data).cpu().sum()
metrics["accuracy"].append(correct.item() / (batch_size * num_point))
hist_acc += metrics["accuracy"]
metrics["accuracy"] = np.mean(hist_acc)
metrics["shape_avg_iou"] = np.mean(shape_ious)
for cat_idx in range(16):
if total_per_cat_seen[cat_idx] > 0:
total_per_cat_iou[cat_idx] = total_per_cat_iou[cat_idx] / total_per_cat_seen[cat_idx]
# First we need to calculate the iou of each class and the avg class iou:
class_iou = 0
for cat_idx in range(16):
class_iou += total_per_cat_iou[cat_idx]
io.cprint(classes_str[cat_idx] + " iou: " + str(total_per_cat_iou[cat_idx])) # print the iou of each class
avg_class_iou = class_iou / 16
outstr = "Test :: test acc: {:f} test class mIOU: {:f}, test instance mIOU: {:f}".format(
metrics["accuracy"],
avg_class_iou,
metrics["shape_avg_iou"],
)
io.cprint(outstr)
if __name__ == "__main__":
# Training settings
parser = argparse.ArgumentParser(description="3D Shape Part Segmentation")
parser.add_argument("--model", type=str, default="PointMLP1")
parser.add_argument("--exp_name", type=str, default="demo1", metavar="N", help="Name of the experiment")
parser.add_argument("--batch_size", type=int, default=32, metavar="batch_size", help="Size of batch)")
parser.add_argument("--test_batch_size", type=int, default=32, metavar="batch_size", help="Size of batch)")
parser.add_argument("--epochs", type=int, default=350, metavar="N", help="number of episode to train")
parser.add_argument("--use_sgd", type=bool, default=False, help="Use SGD")
parser.add_argument("--scheduler", type=str, default="step", help="lr scheduler")
parser.add_argument("--step", type=int, default=40, help="lr decay step")
parser.add_argument("--lr", type=float, default=0.003, metavar="LR", help="learning rate")
parser.add_argument("--momentum", type=float, default=0.9, metavar="M", help="SGD momentum (default: 0.9)")
parser.add_argument("--no_cuda", type=bool, default=False, help="enables CUDA training")
parser.add_argument("--manual_seed", type=int, metavar="S", help="random seed (default: 1)")
parser.add_argument("--eval", type=bool, default=False, help="evaluate the model")
parser.add_argument("--num_points", type=int, default=2048, help="num of points to use")
parser.add_argument("--workers", type=int, default=12)
parser.add_argument("--resume", type=bool, default=False, help="Resume training or not")
parser.add_argument(
"--model_type",
type=str,
default="insiou",
help="choose to test the best insiou/clsiou/acc model (options: insiou, clsiou, acc)",
)
args = parser.parse_args()
args.exp_name = args.model + "_" + args.exp_name
_init_()
if not args.eval:
io = IOStream("checkpoints/" + args.exp_name + "/%s_train.log" % (args.exp_name))
else:
io = IOStream("checkpoints/" + args.exp_name + "/%s_test.log" % (args.exp_name))
io.cprint(str(args))
if args.manual_seed is not None:
random.seed(args.manual_seed)
np.random.seed(args.manual_seed)
torch.manual_seed(args.manual_seed)
args.cuda = not args.no_cuda and torch.cuda.is_available()
if args.cuda:
io.cprint("Using GPU")
if args.manual_seed is not None:
torch.cuda.manual_seed(args.manual_seed)
torch.cuda.manual_seed_all(args.manual_seed)
else:
io.cprint("Using CPU")
if not args.eval:
train(args, io)
else:
test(args, io)