PointMLP/part_segmentation/util/data_util.py
2023-08-03 16:40:14 +02:00

178 lines
6.4 KiB
Python
Executable file

import glob
import json
import os
import h5py
import numpy as np
from torch.utils.data import Dataset
os.environ["HDF5_USE_FILE_LOCKING"] = "FALSE"
def load_data(partition):
all_data = []
all_label = []
for h5_name in glob.glob("./data/modelnet40_ply_hdf5_2048/ply_data_%s*.h5" % partition):
f = h5py.File(h5_name)
data = f["data"][:].astype("float32")
label = f["label"][:].astype("int64")
f.close()
all_data.append(data)
all_label.append(label)
all_data = np.concatenate(all_data, axis=0)
all_label = np.concatenate(all_label, axis=0)
return all_data, all_label
def pc_normalize(pc):
centroid = np.mean(pc, axis=0)
pc = pc - centroid
m = np.max(np.sqrt(np.sum(pc**2, axis=1)))
return pc / m
def translate_pointcloud(pointcloud):
xyz1 = np.random.uniform(low=2.0 / 3.0, high=3.0 / 2.0, size=[3])
xyz2 = np.random.uniform(low=-0.2, high=0.2, size=[3])
return np.add(np.multiply(pointcloud, xyz1), xyz2).astype("float32")
def jitter_pointcloud(pointcloud, sigma=0.01, clip=0.02):
N, C = pointcloud.shape
pointcloud += np.clip(sigma * np.random.randn(N, C), -1 * clip, clip)
return pointcloud
# =========== ModelNet40 =================
class ModelNet40(Dataset):
def __init__(self, num_points, partition="train"):
self.data, self.label = load_data(partition)
self.num_points = num_points
self.partition = partition # Here the new given partition will cover the 'train'
def __getitem__(self, item): # indice of the pts or label
pointcloud = self.data[item][: self.num_points]
label = self.label[item]
if self.partition == "train":
# pointcloud = pc_normalize(pointcloud) # you can try to add it or not to train our model
pointcloud = translate_pointcloud(pointcloud)
np.random.shuffle(pointcloud) # shuffle the order of pts
return pointcloud, label
def __len__(self):
return self.data.shape[0]
# =========== ShapeNet Part =================
class PartNormalDataset(Dataset):
def __init__(self, npoints=2500, split="train", normalize=False):
self.npoints = npoints
self.root = "./data/shapenetcore_partanno_segmentation_benchmark_v0_normal"
self.catfile = os.path.join(self.root, "synsetoffset2category.txt")
self.cat = {}
self.normalize = normalize
with open(self.catfile) as f:
for line in f:
ls = line.strip().split()
self.cat[ls[0]] = ls[1]
self.cat = {k: v for k, v in self.cat.items()}
self.meta = {}
with open(os.path.join(self.root, "train_test_split", "shuffled_train_file_list.json")) as f:
train_ids = set([str(d.split("/")[2]) for d in json.load(f)])
with open(os.path.join(self.root, "train_test_split", "shuffled_val_file_list.json")) as f:
val_ids = set([str(d.split("/")[2]) for d in json.load(f)])
with open(os.path.join(self.root, "train_test_split", "shuffled_test_file_list.json")) as f:
test_ids = set([str(d.split("/")[2]) for d in json.load(f)])
for item in self.cat:
self.meta[item] = []
dir_point = os.path.join(self.root, self.cat[item])
fns = sorted(os.listdir(dir_point))
if split == "trainval":
fns = [fn for fn in fns if ((fn[0:-4] in train_ids) or (fn[0:-4] in val_ids))]
elif split == "train":
fns = [fn for fn in fns if fn[0:-4] in train_ids]
elif split == "val":
fns = [fn for fn in fns if fn[0:-4] in val_ids]
elif split == "test":
fns = [fn for fn in fns if fn[0:-4] in test_ids]
else:
print("Unknown split: %s. Exiting.." % (split))
exit(-1)
for fn in fns:
token = os.path.splitext(os.path.basename(fn))[0]
self.meta[item].append(os.path.join(dir_point, token + ".txt"))
self.datapath = []
for item in self.cat:
for fn in self.meta[item]:
self.datapath.append((item, fn))
self.classes = dict(zip(self.cat, range(len(self.cat))))
# Mapping from category ('Chair') to a list of int [10,11,12,13] as segmentation labels
self.seg_classes = {
"Earphone": [16, 17, 18],
"Motorbike": [30, 31, 32, 33, 34, 35],
"Rocket": [41, 42, 43],
"Car": [8, 9, 10, 11],
"Laptop": [28, 29],
"Cap": [6, 7],
"Skateboard": [44, 45, 46],
"Mug": [36, 37],
"Guitar": [19, 20, 21],
"Bag": [4, 5],
"Lamp": [24, 25, 26, 27],
"Table": [47, 48, 49],
"Airplane": [0, 1, 2, 3],
"Pistol": [38, 39, 40],
"Chair": [12, 13, 14, 15],
"Knife": [22, 23],
}
self.cache = {} # from index to (point_set, cls, seg) tuple
self.cache_size = 20000
def __getitem__(self, index):
if index in self.cache:
point_set, normal, seg, cls = self.cache[index]
else:
fn = self.datapath[index]
cat = self.datapath[index][0]
cls = self.classes[cat]
cls = np.array([cls]).astype(np.int32)
data = np.loadtxt(fn[1]).astype(np.float32)
point_set = data[:, 0:3]
normal = data[:, 3:6]
seg = data[:, -1].astype(np.int32)
if len(self.cache) < self.cache_size:
self.cache[index] = (point_set, normal, seg, cls)
if self.normalize:
point_set = pc_normalize(point_set)
choice = np.random.choice(len(seg), self.npoints, replace=True)
# resample
# note that the number of points in some points clouds is less than 2048, thus use random.choice
# remember to use the same seed during train and test for a getting stable result
point_set = point_set[choice, :]
seg = seg[choice]
normal = normal[choice, :]
return point_set, cls, seg, normal
def __len__(self):
return len(self.datapath)
if __name__ == "__main__":
train = PartNormalDataset(npoints=2048, split="trainval", normalize=False)
test = PartNormalDataset(npoints=2048, split="test", normalize=False)
for data, label, _, _ in train:
print(data.shape)
print(label.shape)