64 lines
1.8 KiB
Python
64 lines
1.8 KiB
Python
"""
|
|
ScanObjectNN download: http://103.24.77.34/scanobjectnn/h5_files.zip
|
|
"""
|
|
|
|
import os
|
|
import sys
|
|
import glob
|
|
import h5py
|
|
import numpy as np
|
|
from torch.utils.data import Dataset
|
|
|
|
os.environ["HDF5_USE_FILE_LOCKING"] = "FALSE"
|
|
|
|
|
|
def load_scanobjectnn_data(partition):
|
|
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
|
|
all_data = []
|
|
all_label = []
|
|
|
|
h5_name = BASE_DIR + '/data/h5_files/main_split/' + partition + '_objectdataset_augmentedrot_scale75.h5'
|
|
f = h5py.File(h5_name, mode="r")
|
|
data = f['data'][:].astype('float32')
|
|
label = f['label'][:].astype('int64')
|
|
f.close()
|
|
all_data.append(data)
|
|
all_label.append(label)
|
|
all_data = np.concatenate(all_data, axis=0)
|
|
all_label = np.concatenate(all_label, axis=0)
|
|
return all_data, all_label
|
|
|
|
|
|
def translate_pointcloud(pointcloud):
|
|
xyz1 = np.random.uniform(low=2. / 3., high=3. / 2., size=[3])
|
|
xyz2 = np.random.uniform(low=-0.2, high=0.2, size=[3])
|
|
|
|
translated_pointcloud = np.add(np.multiply(pointcloud, xyz1), xyz2).astype('float32')
|
|
return translated_pointcloud
|
|
|
|
|
|
class ScanObjectNN(Dataset):
|
|
def __init__(self, num_points, partition='training'):
|
|
self.data, self.label = load_scanobjectnn_data(partition)
|
|
self.num_points = num_points
|
|
self.partition = partition
|
|
|
|
def __getitem__(self, item):
|
|
pointcloud = self.data[item][:self.num_points]
|
|
label = self.label[item]
|
|
if self.partition == 'training':
|
|
pointcloud = translate_pointcloud(pointcloud)
|
|
np.random.shuffle(pointcloud)
|
|
return pointcloud, label
|
|
|
|
def __len__(self):
|
|
return self.data.shape[0]
|
|
|
|
|
|
if __name__ == '__main__':
|
|
train = ScanObjectNN(1024)
|
|
test = ScanObjectNN(1024, 'test')
|
|
for data, label in train:
|
|
print(data.shape)
|
|
print(label)
|