Find a file
2021-10-05 16:45:11 -04:00
classification_ModelNet40 update 2021-10-04 04:00:01 -04:00
classification_ScanObjectNN update 2021-10-04 03:54:06 -04:00
part_segmentation update 2021-10-04 12:50:22 -04:00
pointnet2_ops_lib update 2021-10-04 03:25:18 -04:00
.gitignore update 2021-10-04 03:45:09 -04:00
LICENSE Initial commit 2021-10-04 03:01:38 -04:00
overview.pdf Add files via upload 2021-10-05 16:45:11 -04:00
README.md Update README.md 2021-10-04 13:15:58 -04:00
requirements.txt update 2021-10-04 03:45:09 -04:00

pointMLP-pytorch

Rethinking Network Design and Local Geometry in Point Cloud: A Simple Residual MLP Framework

Pre-trained models

Please download the pre-trained models and log files here: [anonymous google drive]

Install

Please ensure that python3.7+ is installed. We suggest user use conda to create a new environment.

Install dependencies

pip install -r requirements.txt

Install CUDA kernels

pip install pointnet2_ops_lib/.

Classification ModelNet40

The dataset will be automatically downloaded, run following command to train

# train pointMLP
python main.py --model pointMLP
# train pointMLP-elite
python main.py --model pointMLPElite
# please add other paramemters as you wish.

By default, it will create a fold named "checkpoints/{modelName}-{msg}-{randomseed}", which includes args.txt, best_checkpoint.pth, last_checkpoint.pth, log.txt, out.txt.

To conduct voting experiments, run

# please modify the msg accrodingly
python voting.py --model pointMLP --msg demo

Classification ScanObjectNN

  • Make data folder and download the dataset
cd pointMLP-pytorch/classification_ScanObjectNN
mkdir data
cd data
wget http://103.24.77.34/scanobjectnn/h5_files.zip
unzip h5_files.zip
  • Train pointMLP/pointMLPElite
# train pointMLP
python main.py --model pointMLP
# train pointMLP-elite
python main.py --model pointMLPElite
# please add other paramemters as you wish.

By default, it will create a fold named "checkpoints/{modelName}-{msg}-{randomseed}", which includes args.txt, best_checkpoint.pth, last_checkpoint.pth, log.txt, out.txt.

  • To conduct voting experiments
# please modify the msg accrodingly
python voting.py --model pointMLP --msg demo

Part segmentation

  • Make data folder and download the dataset
cd pointMLP-pytorch/part_segmentation
mkdir data
cd data
wget https://shapenet.cs.stanford.edu/media/shapenetcore_partanno_segmentation_benchmark_v0_normal.zip --no-check-certificate
unzip shapenetcore_partanno_segmentation_benchmark_v0_normal.zip
  • Train pointMLP
# train pointMLP
python main.py --model pointMLP
# please add other paramemters as you wish.