Find a file
2021-10-04 12:15:43 -04:00
classification_ModelNet40 update 2021-10-04 04:00:01 -04:00
classification_ScanObjectNN update 2021-10-04 03:54:06 -04:00
part_segmentation update 2021-10-04 03:22:15 -04:00
pointnet2_ops_lib update 2021-10-04 03:25:18 -04:00
.gitignore update 2021-10-04 03:45:09 -04:00
LICENSE Initial commit 2021-10-04 03:01:38 -04:00
README.md Update README.md 2021-10-04 12:15:43 -04:00
requirements.txt update 2021-10-04 03:45:09 -04:00

pointMLP-pytorch

Rethinking Network Design and Local Geometry in Point Cloud: A Simple Residual MLP Framework

Install

Please ensure that python3.7+ is installed. We suggest user use conda to create a new environment.

Install dependencies

pip install -r requirement.txt

Install CUDA kernels

pip install pointnet2_ops_lib/.

Classification ModelNet40

The dataset will be automatically downloaded, run following command to train

# train pointMLP
python main.py --model pointMLP
# train pointMLP-elite
python main.py --model pointMLPElite
# please add other paramemters as you wish.

By default, it will create a fold named "checkpoints/{modelName}-{msg}-{randomseed}", which includes args.txt, best_checkpoint.pth, last_checkpoint.pth, log.txt, out.txt.

To conduct voting experiments, run

# please modify the msg accrodingly
python voting.py --model pointMLP --msg demo

Classification ScanObjectNN

Part segmentation