PointMLP/part_segmentation/model/pointMLP.py
2023-08-03 16:40:14 +02:00

543 lines
19 KiB
Python

import torch
import torch.nn as nn
import torch.nn.functional as F
from pointnet2_ops import pointnet2_utils
def get_activation(activation):
if activation.lower() == "gelu":
return nn.GELU()
elif activation.lower() == "rrelu":
return nn.RReLU(inplace=True)
elif activation.lower() == "selu":
return nn.SELU(inplace=True)
elif activation.lower() == "silu":
return nn.SiLU(inplace=True)
elif activation.lower() == "hardswish":
return nn.Hardswish(inplace=True)
elif activation.lower() == "leakyrelu":
return nn.LeakyReLU(inplace=True)
elif activation.lower() == "leakyrelu0.2":
return nn.LeakyReLU(negative_slope=0.2, inplace=True)
else:
return nn.ReLU(inplace=True)
def square_distance(src, dst):
"""Calculate Euclid distance between each two points.
src^T * dst = xn * xm + yn * ym + zn * zm;
sum(src^2, dim=-1) = xn*xn + yn*yn + zn*zn;
sum(dst^2, dim=-1) = xm*xm + ym*ym + zm*zm;
dist = (xn - xm)^2 + (yn - ym)^2 + (zn - zm)^2
= sum(src**2,dim=-1)+sum(dst**2,dim=-1)-2*src^T*dst
Input:
src: source points, [B, N, C]
dst: target points, [B, M, C]
Output:
dist: per-point square distance, [B, N, M].
"""
B, N, _ = src.shape
_, M, _ = dst.shape
dist = -2 * torch.matmul(src, dst.permute(0, 2, 1))
dist += torch.sum(src**2, -1).view(B, N, 1)
dist += torch.sum(dst**2, -1).view(B, 1, M)
return dist
def index_points(points, idx):
"""Input:
points: input points data, [B, N, C]
idx: sample index data, [B, S].
Return:
new_points:, indexed points data, [B, S, C].
"""
device = points.device
B = points.shape[0]
view_shape = list(idx.shape)
view_shape[1:] = [1] * (len(view_shape) - 1)
repeat_shape = list(idx.shape)
repeat_shape[0] = 1
batch_indices = torch.arange(B, dtype=torch.long).to(device).view(view_shape).repeat(repeat_shape)
return points[batch_indices, idx, :]
def farthest_point_sample(xyz, npoint):
"""Input:
xyz: pointcloud data, [B, N, 3]
npoint: number of samples
Return:
centroids: sampled pointcloud index, [B, npoint].
"""
device = xyz.device
B, N, C = xyz.shape
centroids = torch.zeros(B, npoint, dtype=torch.long).to(device)
distance = torch.ones(B, N).to(device) * 1e10
farthest = torch.randint(0, N, (B,), dtype=torch.long).to(device)
batch_indices = torch.arange(B, dtype=torch.long).to(device)
for i in range(npoint):
centroids[:, i] = farthest
centroid = xyz[batch_indices, farthest, :].view(B, 1, 3)
dist = torch.sum((xyz - centroid) ** 2, -1)
distance = torch.min(distance, dist)
farthest = torch.max(distance, -1)[1]
return centroids
def query_ball_point(radius, nsample, xyz, new_xyz):
"""Input:
radius: local region radius
nsample: max sample number in local region
xyz: all points, [B, N, 3]
new_xyz: query points, [B, S, 3].
Return:
group_idx: grouped points index, [B, S, nsample].
"""
device = xyz.device
B, N, C = xyz.shape
_, S, _ = new_xyz.shape
group_idx = torch.arange(N, dtype=torch.long).to(device).view(1, 1, N).repeat([B, S, 1])
sqrdists = square_distance(new_xyz, xyz)
group_idx[sqrdists > radius**2] = N
group_idx = group_idx.sort(dim=-1)[0][:, :, :nsample]
group_first = group_idx[:, :, 0].view(B, S, 1).repeat([1, 1, nsample])
mask = group_idx == N
group_idx[mask] = group_first[mask]
return group_idx
def knn_point(nsample, xyz, new_xyz):
"""Input:
nsample: max sample number in local region
xyz: all points, [B, N, C]
new_xyz: query points, [B, S, C].
Return:
group_idx: grouped points index, [B, S, nsample].
"""
sqrdists = square_distance(new_xyz, xyz)
_, group_idx = torch.topk(sqrdists, nsample, dim=-1, largest=False, sorted=False)
return group_idx
class LocalGrouper(nn.Module):
def __init__(self, channel, groups, kneighbors, use_xyz=True, normalize="anchor", **kwargs):
"""Give xyz[b,p,3] and fea[b,p,d], return new_xyz[b,g,3] and new_fea[b,g,k,d]
:param groups: groups number
:param kneighbors: k-nerighbors
:param kwargs: others.
"""
super().__init__()
self.groups = groups
self.kneighbors = kneighbors
self.use_xyz = use_xyz
if normalize is not None:
self.normalize = normalize.lower()
else:
self.normalize = None
if self.normalize not in ["center", "anchor"]:
print("Unrecognized normalize parameter (self.normalize), set to None. Should be one of [center, anchor].")
self.normalize = None
if self.normalize is not None:
add_channel = 3 if self.use_xyz else 0
self.affine_alpha = nn.Parameter(torch.ones([1, 1, 1, channel + add_channel]))
self.affine_beta = nn.Parameter(torch.zeros([1, 1, 1, channel + add_channel]))
def forward(self, xyz, points):
B, N, C = xyz.shape
S = self.groups
xyz = xyz.contiguous() # xyz [btach, points, xyz]
# fps_idx = torch.multinomial(torch.linspace(0, N - 1, steps=N).repeat(B, 1).to(xyz.device), num_samples=self.groups, replacement=False).long()
# fps_idx = farthest_point_sample(xyz, self.groups).long()
fps_idx = pointnet2_utils.furthest_point_sample(xyz, self.groups).long() # [B, npoint]
new_xyz = index_points(xyz, fps_idx) # [B, npoint, 3]
new_points = index_points(points, fps_idx) # [B, npoint, d]
idx = knn_point(self.kneighbors, xyz, new_xyz)
# idx = query_ball_point(radius, nsample, xyz, new_xyz)
grouped_xyz = index_points(xyz, idx) # [B, npoint, k, 3]
grouped_points = index_points(points, idx) # [B, npoint, k, d]
if self.use_xyz:
grouped_points = torch.cat([grouped_points, grouped_xyz], dim=-1) # [B, npoint, k, d+3]
if self.normalize is not None:
if self.normalize == "center":
mean = torch.mean(grouped_points, dim=2, keepdim=True)
if self.normalize == "anchor":
mean = torch.cat([new_points, new_xyz], dim=-1) if self.use_xyz else new_points
mean = mean.unsqueeze(dim=-2) # [B, npoint, 1, d+3]
std = (
torch.std((grouped_points - mean).reshape(B, -1), dim=-1, keepdim=True)
.unsqueeze(dim=-1)
.unsqueeze(dim=-1)
)
grouped_points = (grouped_points - mean) / (std + 1e-5)
grouped_points = self.affine_alpha * grouped_points + self.affine_beta
new_points = torch.cat([grouped_points, new_points.view(B, S, 1, -1).repeat(1, 1, self.kneighbors, 1)], dim=-1)
return new_xyz, new_points
class ConvBNReLU1D(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size=1, bias=True, activation="relu"):
super().__init__()
self.act = get_activation(activation)
self.net = nn.Sequential(
nn.Conv1d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, bias=bias),
nn.BatchNorm1d(out_channels),
self.act,
)
def forward(self, x):
return self.net(x)
class ConvBNReLURes1D(nn.Module):
def __init__(self, channel, kernel_size=1, groups=1, res_expansion=1.0, bias=True, activation="relu"):
super().__init__()
self.act = get_activation(activation)
self.net1 = nn.Sequential(
nn.Conv1d(
in_channels=channel,
out_channels=int(channel * res_expansion),
kernel_size=kernel_size,
groups=groups,
bias=bias,
),
nn.BatchNorm1d(int(channel * res_expansion)),
self.act,
)
if groups > 1:
self.net2 = nn.Sequential(
nn.Conv1d(
in_channels=int(channel * res_expansion),
out_channels=channel,
kernel_size=kernel_size,
groups=groups,
bias=bias,
),
nn.BatchNorm1d(channel),
self.act,
nn.Conv1d(in_channels=channel, out_channels=channel, kernel_size=kernel_size, bias=bias),
nn.BatchNorm1d(channel),
)
else:
self.net2 = nn.Sequential(
nn.Conv1d(
in_channels=int(channel * res_expansion),
out_channels=channel,
kernel_size=kernel_size,
bias=bias,
),
nn.BatchNorm1d(channel),
)
def forward(self, x):
return self.act(self.net2(self.net1(x)) + x)
class PreExtraction(nn.Module):
def __init__(
self,
channels,
out_channels,
blocks=1,
groups=1,
res_expansion=1,
bias=True,
activation="relu",
use_xyz=True,
):
"""input: [b,g,k,d]: output:[b,d,g]
:param channels:
:param blocks:
"""
super().__init__()
in_channels = 3 + 2 * channels if use_xyz else 2 * channels
self.transfer = ConvBNReLU1D(in_channels, out_channels, bias=bias, activation=activation)
operation = []
for _ in range(blocks):
operation.append(
ConvBNReLURes1D(
out_channels,
groups=groups,
res_expansion=res_expansion,
bias=bias,
activation=activation,
),
)
self.operation = nn.Sequential(*operation)
def forward(self, x):
b, n, s, d = x.size() # torch.Size([32, 512, 32, 6])
x = x.permute(0, 1, 3, 2)
x = x.reshape(-1, d, s)
x = self.transfer(x)
batch_size, _, _ = x.size()
x = self.operation(x) # [b, d, k]
x = F.adaptive_max_pool1d(x, 1).view(batch_size, -1)
return x.reshape(b, n, -1).permute(0, 2, 1)
class PosExtraction(nn.Module):
def __init__(self, channels, blocks=1, groups=1, res_expansion=1, bias=True, activation="relu"):
"""input[b,d,g]; output[b,d,g]
:param channels:
:param blocks:
"""
super().__init__()
operation = []
for _ in range(blocks):
operation.append(
ConvBNReLURes1D(channels, groups=groups, res_expansion=res_expansion, bias=bias, activation=activation),
)
self.operation = nn.Sequential(*operation)
def forward(self, x): # [b, d, g]
return self.operation(x)
class PointNetFeaturePropagation(nn.Module):
def __init__(self, in_channel, out_channel, blocks=1, groups=1, res_expansion=1.0, bias=True, activation="relu"):
super().__init__()
self.fuse = ConvBNReLU1D(in_channel, out_channel, 1, bias=bias)
self.extraction = PosExtraction(
out_channel,
blocks,
groups=groups,
res_expansion=res_expansion,
bias=bias,
activation=activation,
)
def forward(self, xyz1, xyz2, points1, points2):
"""Input:
xyz1: input points position data, [B, N, 3]
xyz2: sampled input points position data, [B, S, 3]
points1: input points data, [B, D', N]
points2: input points data, [B, D'', S].
Return:
new_points: upsampled points data, [B, D''', N].
"""
# xyz1 = xyz1.permute(0, 2, 1)
# xyz2 = xyz2.permute(0, 2, 1)
points2 = points2.permute(0, 2, 1)
B, N, C = xyz1.shape
_, S, _ = xyz2.shape
if S == 1:
interpolated_points = points2.repeat(1, N, 1)
else:
dists = square_distance(xyz1, xyz2)
dists, idx = dists.sort(dim=-1)
dists, idx = dists[:, :, :3], idx[:, :, :3] # [B, N, 3]
dist_recip = 1.0 / (dists + 1e-8)
norm = torch.sum(dist_recip, dim=2, keepdim=True)
weight = dist_recip / norm
interpolated_points = torch.sum(index_points(points2, idx) * weight.view(B, N, 3, 1), dim=2)
if points1 is not None:
points1 = points1.permute(0, 2, 1)
new_points = torch.cat([points1, interpolated_points], dim=-1)
else:
new_points = interpolated_points
new_points = new_points.permute(0, 2, 1)
new_points = self.fuse(new_points)
return self.extraction(new_points)
class PointMLP(nn.Module):
def __init__(
self,
num_classes=50,
points=2048,
embed_dim=64,
groups=1,
res_expansion=1.0,
activation="relu",
bias=True,
use_xyz=True,
normalize="anchor",
dim_expansion=[2, 2, 2, 2],
pre_blocks=[2, 2, 2, 2],
pos_blocks=[2, 2, 2, 2],
k_neighbors=[32, 32, 32, 32],
reducers=[4, 4, 4, 4],
de_dims=[512, 256, 128, 128],
de_blocks=[2, 2, 2, 2],
gmp_dim=64,
cls_dim=64,
**kwargs,
):
super().__init__()
self.stages = len(pre_blocks)
self.class_num = num_classes
self.points = points
self.embedding = ConvBNReLU1D(6, embed_dim, bias=bias, activation=activation)
assert (
len(pre_blocks) == len(k_neighbors) == len(reducers) == len(pos_blocks) == len(dim_expansion)
), "Please check stage number consistent for pre_blocks, pos_blocks k_neighbors, reducers."
self.local_grouper_list = nn.ModuleList()
self.pre_blocks_list = nn.ModuleList()
self.pos_blocks_list = nn.ModuleList()
last_channel = embed_dim
anchor_points = self.points
en_dims = [last_channel]
### Building Encoder #####
for i in range(len(pre_blocks)):
out_channel = last_channel * dim_expansion[i]
pre_block_num = pre_blocks[i]
pos_block_num = pos_blocks[i]
kneighbor = k_neighbors[i]
reduce = reducers[i]
anchor_points = anchor_points // reduce
# append local_grouper_list
local_grouper = LocalGrouper(last_channel, anchor_points, kneighbor, use_xyz, normalize) # [b,g,k,d]
self.local_grouper_list.append(local_grouper)
# append pre_block_list
pre_block_module = PreExtraction(
last_channel,
out_channel,
pre_block_num,
groups=groups,
res_expansion=res_expansion,
bias=bias,
activation=activation,
use_xyz=use_xyz,
)
self.pre_blocks_list.append(pre_block_module)
# append pos_block_list
pos_block_module = PosExtraction(
out_channel,
pos_block_num,
groups=groups,
res_expansion=res_expansion,
bias=bias,
activation=activation,
)
self.pos_blocks_list.append(pos_block_module)
last_channel = out_channel
en_dims.append(last_channel)
### Building Decoder #####
self.decode_list = nn.ModuleList()
en_dims.reverse()
de_dims.insert(0, en_dims[0])
assert len(en_dims) == len(de_dims) == len(de_blocks) + 1
for i in range(len(en_dims) - 1):
self.decode_list.append(
PointNetFeaturePropagation(
de_dims[i] + en_dims[i + 1],
de_dims[i + 1],
blocks=de_blocks[i],
groups=groups,
res_expansion=res_expansion,
bias=bias,
activation=activation,
),
)
self.act = get_activation(activation)
# class label mapping
self.cls_map = nn.Sequential(
ConvBNReLU1D(16, cls_dim, bias=bias, activation=activation),
ConvBNReLU1D(cls_dim, cls_dim, bias=bias, activation=activation),
)
# global max pooling mapping
self.gmp_map_list = nn.ModuleList()
for en_dim in en_dims:
self.gmp_map_list.append(ConvBNReLU1D(en_dim, gmp_dim, bias=bias, activation=activation))
self.gmp_map_end = ConvBNReLU1D(gmp_dim * len(en_dims), gmp_dim, bias=bias, activation=activation)
# classifier
self.classifier = nn.Sequential(
nn.Conv1d(gmp_dim + cls_dim + de_dims[-1], 128, 1, bias=bias),
nn.BatchNorm1d(128),
nn.Dropout(),
nn.Conv1d(128, num_classes, 1, bias=bias),
)
self.en_dims = en_dims
def forward(self, x, norm_plt, cls_label):
xyz = x.permute(0, 2, 1)
x = torch.cat([x, norm_plt], dim=1)
x = self.embedding(x) # B,D,N
xyz_list = [xyz] # [B, N, 3]
x_list = [x] # [B, D, N]
# here is the encoder
for i in range(self.stages):
# Give xyz[b, p, 3] and fea[b, p, d], return new_xyz[b, g, 3] and new_fea[b, g, k, d]
xyz, x = self.local_grouper_list[i](xyz, x.permute(0, 2, 1)) # [b,g,3] [b,g,k,d]
x = self.pre_blocks_list[i](x) # [b,d,g]
x = self.pos_blocks_list[i](x) # [b,d,g]
xyz_list.append(xyz)
x_list.append(x)
# here is the decoder
xyz_list.reverse()
x_list.reverse()
x = x_list[0]
for i in range(len(self.decode_list)):
x = self.decode_list[i](xyz_list[i + 1], xyz_list[i], x_list[i + 1], x)
# here is the global context
gmp_list = []
for i in range(len(x_list)):
gmp_list.append(F.adaptive_max_pool1d(self.gmp_map_list[i](x_list[i]), 1))
global_context = self.gmp_map_end(torch.cat(gmp_list, dim=1)) # [b, gmp_dim, 1]
# here is the cls_token
cls_token = self.cls_map(cls_label.unsqueeze(dim=-1)) # [b, cls_dim, 1]
x = torch.cat([x, global_context.repeat([1, 1, x.shape[-1]]), cls_token.repeat([1, 1, x.shape[-1]])], dim=1)
x = self.classifier(x)
x = F.log_softmax(x, dim=1)
return x.permute(0, 2, 1)
def pointMLP(num_classes=50, **kwargs) -> PointMLP:
return PointMLP(
num_classes=num_classes,
points=2048,
embed_dim=64,
groups=1,
res_expansion=1.0,
activation="relu",
bias=True,
use_xyz=True,
normalize="anchor",
dim_expansion=[2, 2, 2, 2],
pre_blocks=[2, 2, 2, 2],
pos_blocks=[2, 2, 2, 2],
k_neighbors=[32, 32, 32, 32],
reducers=[4, 4, 4, 4],
de_dims=[512, 256, 128, 128],
de_blocks=[4, 4, 4, 4],
gmp_dim=64,
cls_dim=64,
**kwargs,
)
if __name__ == "__main__":
data = torch.rand(2, 3, 2048).cuda()
norm = torch.rand(2, 3, 2048).cuda()
cls_label = torch.rand([2, 16]).cuda()
print(f"data shape: {data.shape}")
print(f"norm shape: {norm.shape}")
print(f"cls_label shape: {cls_label.shape}")
print("===> testing pointMLP (segmentation) ...")
model = pointMLP(50).cuda()
out = model(data, norm, cls_label) # [2,2048,50]
print(f"out shape: {out.shape}")