abc917654c
leads to unstable testing
369 lines
14 KiB
Python
369 lines
14 KiB
Python
|
||
import torch
|
||
import torch.nn as nn
|
||
import torch.nn.functional as F
|
||
# from torch import einsum
|
||
# from einops import rearrange, repeat
|
||
|
||
|
||
from pointnet2_ops import pointnet2_utils
|
||
|
||
|
||
def get_activation(activation):
|
||
if activation.lower() == 'gelu':
|
||
return nn.GELU()
|
||
elif activation.lower() == 'rrelu':
|
||
return nn.RReLU(inplace=True)
|
||
elif activation.lower() == 'selu':
|
||
return nn.SELU(inplace=True)
|
||
elif activation.lower() == 'silu':
|
||
return nn.SiLU(inplace=True)
|
||
elif activation.lower() == 'hardswish':
|
||
return nn.Hardswish(inplace=True)
|
||
elif activation.lower() == 'leakyrelu':
|
||
return nn.LeakyReLU(inplace=True)
|
||
else:
|
||
return nn.ReLU(inplace=True)
|
||
|
||
|
||
def square_distance(src, dst):
|
||
"""
|
||
Calculate Euclid distance between each two points.
|
||
src^T * dst = xn * xm + yn * ym + zn * zm;
|
||
sum(src^2, dim=-1) = xn*xn + yn*yn + zn*zn;
|
||
sum(dst^2, dim=-1) = xm*xm + ym*ym + zm*zm;
|
||
dist = (xn - xm)^2 + (yn - ym)^2 + (zn - zm)^2
|
||
= sum(src**2,dim=-1)+sum(dst**2,dim=-1)-2*src^T*dst
|
||
Input:
|
||
src: source points, [B, N, C]
|
||
dst: target points, [B, M, C]
|
||
Output:
|
||
dist: per-point square distance, [B, N, M]
|
||
"""
|
||
B, N, _ = src.shape
|
||
_, M, _ = dst.shape
|
||
dist = -2 * torch.matmul(src, dst.permute(0, 2, 1))
|
||
dist += torch.sum(src ** 2, -1).view(B, N, 1)
|
||
dist += torch.sum(dst ** 2, -1).view(B, 1, M)
|
||
return dist
|
||
|
||
|
||
def index_points(points, idx):
|
||
"""
|
||
Input:
|
||
points: input points data, [B, N, C]
|
||
idx: sample index data, [B, S]
|
||
Return:
|
||
new_points:, indexed points data, [B, S, C]
|
||
"""
|
||
device = points.device
|
||
B = points.shape[0]
|
||
view_shape = list(idx.shape)
|
||
view_shape[1:] = [1] * (len(view_shape) - 1)
|
||
repeat_shape = list(idx.shape)
|
||
repeat_shape[0] = 1
|
||
batch_indices = torch.arange(B, dtype=torch.long).to(device).view(view_shape).repeat(repeat_shape)
|
||
new_points = points[batch_indices, idx, :]
|
||
return new_points
|
||
|
||
|
||
def farthest_point_sample(xyz, npoint):
|
||
"""
|
||
Input:
|
||
xyz: pointcloud data, [B, N, 3]
|
||
npoint: number of samples
|
||
Return:
|
||
centroids: sampled pointcloud index, [B, npoint]
|
||
"""
|
||
device = xyz.device
|
||
B, N, C = xyz.shape
|
||
centroids = torch.zeros(B, npoint, dtype=torch.long).to(device)
|
||
distance = torch.ones(B, N).to(device) * 1e10
|
||
farthest = torch.randint(0, N, (B,), dtype=torch.long).to(device)
|
||
batch_indices = torch.arange(B, dtype=torch.long).to(device)
|
||
for i in range(npoint):
|
||
centroids[:, i] = farthest
|
||
centroid = xyz[batch_indices, farthest, :].view(B, 1, 3)
|
||
dist = torch.sum((xyz - centroid) ** 2, -1)
|
||
distance = torch.min(distance, dist)
|
||
farthest = torch.max(distance, -1)[1]
|
||
return centroids
|
||
|
||
|
||
def query_ball_point(radius, nsample, xyz, new_xyz):
|
||
"""
|
||
Input:
|
||
radius: local region radius
|
||
nsample: max sample number in local region
|
||
xyz: all points, [B, N, 3]
|
||
new_xyz: query points, [B, S, 3]
|
||
Return:
|
||
group_idx: grouped points index, [B, S, nsample]
|
||
"""
|
||
device = xyz.device
|
||
B, N, C = xyz.shape
|
||
_, S, _ = new_xyz.shape
|
||
group_idx = torch.arange(N, dtype=torch.long).to(device).view(1, 1, N).repeat([B, S, 1])
|
||
sqrdists = square_distance(new_xyz, xyz)
|
||
group_idx[sqrdists > radius ** 2] = N
|
||
group_idx = group_idx.sort(dim=-1)[0][:, :, :nsample]
|
||
group_first = group_idx[:, :, 0].view(B, S, 1).repeat([1, 1, nsample])
|
||
mask = group_idx == N
|
||
group_idx[mask] = group_first[mask]
|
||
return group_idx
|
||
|
||
|
||
def knn_point(nsample, xyz, new_xyz):
|
||
"""
|
||
Input:
|
||
nsample: max sample number in local region
|
||
xyz: all points, [B, N, C]
|
||
new_xyz: query points, [B, S, C]
|
||
Return:
|
||
group_idx: grouped points index, [B, S, nsample]
|
||
"""
|
||
sqrdists = square_distance(new_xyz, xyz)
|
||
_, group_idx = torch.topk(sqrdists, nsample, dim=-1, largest=False, sorted=False)
|
||
return group_idx
|
||
|
||
|
||
class LocalGrouper(nn.Module):
|
||
def __init__(self, channel, groups, kneighbors, use_xyz=True, normalize="center", **kwargs):
|
||
"""
|
||
Give xyz[b,p,3] and fea[b,p,d], return new_xyz[b,g,3] and new_fea[b,g,k,d]
|
||
:param groups: groups number
|
||
:param kneighbors: k-nerighbors
|
||
:param kwargs: others
|
||
"""
|
||
super(LocalGrouper, self).__init__()
|
||
self.groups = groups
|
||
self.kneighbors = kneighbors
|
||
self.use_xyz = use_xyz
|
||
if normalize is not None:
|
||
self.normalize = normalize.lower()
|
||
else:
|
||
self.normalize = None
|
||
if self.normalize not in ["center", "anchor"]:
|
||
print(f"Unrecognized normalize parameter (self.normalize), set to None. Should be one of [center, anchor].")
|
||
self.normalize = None
|
||
if self.normalize is not None:
|
||
add_channel=3 if self.use_xyz else 0
|
||
self.affine_alpha = nn.Parameter(torch.ones([1,1,1,channel + add_channel]))
|
||
self.affine_beta = nn.Parameter(torch.zeros([1, 1, 1, channel + add_channel]))
|
||
|
||
def forward(self, xyz, points):
|
||
B, N, C = xyz.shape
|
||
S = self.groups
|
||
xyz = xyz.contiguous() # xyz [btach, points, xyz]
|
||
|
||
# fps_idx = torch.multinomial(torch.linspace(0, N - 1, steps=N).repeat(B, 1).to(xyz.device), num_samples=self.groups, replacement=False).long()
|
||
# fps_idx = farthest_point_sample(xyz, self.groups).long()
|
||
fps_idx = pointnet2_utils.furthest_point_sample(xyz, self.groups).long() # [B, npoint]
|
||
new_xyz = index_points(xyz, fps_idx) # [B, npoint, 3]
|
||
new_points = index_points(points, fps_idx) # [B, npoint, d]
|
||
|
||
idx = knn_point(self.kneighbors, xyz, new_xyz)
|
||
# idx = query_ball_point(radius, nsample, xyz, new_xyz)
|
||
grouped_xyz = index_points(xyz, idx) # [B, npoint, k, 3]
|
||
grouped_points = index_points(points, idx) # [B, npoint, k, d]
|
||
if self.use_xyz:
|
||
grouped_points = torch.cat([grouped_points, grouped_xyz],dim=-1) # [B, npoint, k, d+3]
|
||
if self.normalize is not None:
|
||
if self.normalize =="center":
|
||
mean = torch.mean(grouped_points, dim=2, keepdim=True)
|
||
if self.normalize =="anchor":
|
||
mean = torch.cat([new_points, new_xyz],dim=-1) if self.use_xyz else new_points
|
||
mean = mean.unsqueeze(dim=-2) # [B, npoint, 1, d+3]
|
||
std = torch.std((grouped_points-mean).reshape(B,-1),dim=-1,keepdim=True).unsqueeze(dim=-1).unsqueeze(dim=-1)
|
||
grouped_points = (grouped_points-mean)/(std + 1e-5)
|
||
grouped_points = self.affine_alpha*grouped_points + self.affine_beta
|
||
|
||
new_points = torch.cat([grouped_points, new_points.view(B, S, 1, -1).repeat(1, 1, self.kneighbors, 1)], dim=-1)
|
||
return new_xyz, new_points
|
||
|
||
|
||
class ConvBNReLU1D(nn.Module):
|
||
def __init__(self, in_channels, out_channels, kernel_size=1, bias=True, activation='relu'):
|
||
super(ConvBNReLU1D, self).__init__()
|
||
self.act = get_activation(activation)
|
||
self.net = nn.Sequential(
|
||
nn.Conv1d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, bias=bias),
|
||
nn.BatchNorm1d(out_channels),
|
||
self.act
|
||
)
|
||
|
||
def forward(self, x):
|
||
return self.net(x)
|
||
|
||
|
||
class ConvBNReLURes1D(nn.Module):
|
||
def __init__(self, channel, kernel_size=1, groups=1, res_expansion=1.0, bias=True, activation='relu'):
|
||
super(ConvBNReLURes1D, self).__init__()
|
||
self.act = get_activation(activation)
|
||
self.net1 = nn.Sequential(
|
||
nn.Conv1d(in_channels=channel, out_channels=int(channel * res_expansion),
|
||
kernel_size=kernel_size, groups=groups, bias=bias),
|
||
nn.BatchNorm1d(int(channel * res_expansion)),
|
||
self.act
|
||
)
|
||
if groups > 1:
|
||
self.net2 = nn.Sequential(
|
||
nn.Conv1d(in_channels=int(channel * res_expansion), out_channels=channel,
|
||
kernel_size=kernel_size, groups=groups, bias=bias),
|
||
nn.BatchNorm1d(channel),
|
||
self.act,
|
||
nn.Conv1d(in_channels=channel, out_channels=channel,
|
||
kernel_size=kernel_size, bias=bias),
|
||
nn.BatchNorm1d(channel),
|
||
)
|
||
else:
|
||
self.net2 = nn.Sequential(
|
||
nn.Conv1d(in_channels=int(channel * res_expansion), out_channels=channel,
|
||
kernel_size=kernel_size, bias=bias),
|
||
nn.BatchNorm1d(channel)
|
||
)
|
||
|
||
def forward(self, x):
|
||
return self.act(self.net2(self.net1(x)) + x)
|
||
|
||
|
||
class PreExtraction(nn.Module):
|
||
def __init__(self, channels, out_channels, blocks=1, groups=1, res_expansion=1, bias=True,
|
||
activation='relu', use_xyz=True):
|
||
"""
|
||
input: [b,g,k,d]: output:[b,d,g]
|
||
:param channels:
|
||
:param blocks:
|
||
"""
|
||
super(PreExtraction, self).__init__()
|
||
in_channels = 3+2*channels if use_xyz else 2*channels
|
||
self.transfer = ConvBNReLU1D(in_channels, out_channels, bias=bias, activation=activation)
|
||
operation = []
|
||
for _ in range(blocks):
|
||
operation.append(
|
||
ConvBNReLURes1D(out_channels, groups=groups, res_expansion=res_expansion,
|
||
bias=bias, activation=activation)
|
||
)
|
||
self.operation = nn.Sequential(*operation)
|
||
|
||
def forward(self, x):
|
||
b, n, s, d = x.size() # torch.Size([32, 512, 32, 6])
|
||
x = x.permute(0, 1, 3, 2)
|
||
x = x.reshape(-1, d, s)
|
||
x = self.transfer(x)
|
||
batch_size, _, _ = x.size()
|
||
x = self.operation(x) # [b, d, k]
|
||
x = F.adaptive_max_pool1d(x, 1).view(batch_size, -1)
|
||
x = x.reshape(b, n, -1).permute(0, 2, 1)
|
||
return x
|
||
|
||
|
||
class PosExtraction(nn.Module):
|
||
def __init__(self, channels, blocks=1, groups=1, res_expansion=1, bias=True, activation='relu'):
|
||
"""
|
||
input[b,d,g]; output[b,d,g]
|
||
:param channels:
|
||
:param blocks:
|
||
"""
|
||
super(PosExtraction, self).__init__()
|
||
operation = []
|
||
for _ in range(blocks):
|
||
operation.append(
|
||
ConvBNReLURes1D(channels, groups=groups, res_expansion=res_expansion, bias=bias, activation=activation)
|
||
)
|
||
self.operation = nn.Sequential(*operation)
|
||
|
||
def forward(self, x): # [b, d, g]
|
||
return self.operation(x)
|
||
|
||
|
||
class Model(nn.Module):
|
||
def __init__(self, points=1024, class_num=40, embed_dim=64, groups=1, res_expansion=1.0,
|
||
activation="relu", bias=True, use_xyz=True, normalize="center",
|
||
dim_expansion=[2, 2, 2, 2], pre_blocks=[2, 2, 2, 2], pos_blocks=[2, 2, 2, 2],
|
||
k_neighbors=[32, 32, 32, 32], reducers=[2, 2, 2, 2], **kwargs):
|
||
super(Model, self).__init__()
|
||
self.stages = len(pre_blocks)
|
||
self.class_num = class_num
|
||
self.points = points
|
||
self.embedding = ConvBNReLU1D(3, embed_dim, bias=bias, activation=activation)
|
||
assert len(pre_blocks) == len(k_neighbors) == len(reducers) == len(pos_blocks) == len(dim_expansion), \
|
||
"Please check stage number consistent for pre_blocks, pos_blocks k_neighbors, reducers."
|
||
self.local_grouper_list = nn.ModuleList()
|
||
self.pre_blocks_list = nn.ModuleList()
|
||
self.pos_blocks_list = nn.ModuleList()
|
||
last_channel = embed_dim
|
||
anchor_points = self.points
|
||
for i in range(len(pre_blocks)):
|
||
out_channel = last_channel * dim_expansion[i]
|
||
pre_block_num = pre_blocks[i]
|
||
pos_block_num = pos_blocks[i]
|
||
kneighbor = k_neighbors[i]
|
||
reduce = reducers[i]
|
||
anchor_points = anchor_points // reduce
|
||
# append local_grouper_list
|
||
local_grouper = LocalGrouper(last_channel, anchor_points, kneighbor, use_xyz, normalize) # [b,g,k,d]
|
||
self.local_grouper_list.append(local_grouper)
|
||
# append pre_block_list
|
||
pre_block_module = PreExtraction(last_channel, out_channel, pre_block_num, groups=groups,
|
||
res_expansion=res_expansion,
|
||
bias=bias, activation=activation, use_xyz=use_xyz)
|
||
self.pre_blocks_list.append(pre_block_module)
|
||
# append pos_block_list
|
||
pos_block_module = PosExtraction(out_channel, pos_block_num, groups=groups,
|
||
res_expansion=res_expansion, bias=bias, activation=activation)
|
||
self.pos_blocks_list.append(pos_block_module)
|
||
|
||
last_channel = out_channel
|
||
|
||
self.act = get_activation(activation)
|
||
self.classifier = nn.Sequential(
|
||
nn.Linear(last_channel, 512),
|
||
nn.BatchNorm1d(512),
|
||
self.act,
|
||
nn.Dropout(0.5),
|
||
nn.Linear(512, 256),
|
||
nn.BatchNorm1d(256),
|
||
self.act,
|
||
nn.Dropout(0.5),
|
||
nn.Linear(256, self.class_num)
|
||
)
|
||
|
||
def forward(self, x):
|
||
xyz = x.permute(0, 2, 1)
|
||
batch_size, _, _ = x.size()
|
||
x = self.embedding(x) # B,D,N
|
||
for i in range(self.stages):
|
||
# Give xyz[b, p, 3] and fea[b, p, d], return new_xyz[b, g, 3] and new_fea[b, g, k, d]
|
||
xyz, x = self.local_grouper_list[i](xyz, x.permute(0, 2, 1)) # [b,g,3] [b,g,k,d]
|
||
x = self.pre_blocks_list[i](x) # [b,d,g]
|
||
x = self.pos_blocks_list[i](x) # [b,d,g]
|
||
|
||
x = F.adaptive_max_pool1d(x, 1).squeeze(dim=-1)
|
||
x = self.classifier(x)
|
||
return x
|
||
|
||
|
||
|
||
|
||
def pointMLP(num_classes=40, **kwargs) -> Model:
|
||
return Model(points=1024, class_num=num_classes, embed_dim=64, groups=1, res_expansion=1.0,
|
||
activation="relu", bias=False, use_xyz=False, normalize="anchor",
|
||
dim_expansion=[2, 2, 2, 2], pre_blocks=[2, 2, 2, 2], pos_blocks=[2, 2, 2, 2],
|
||
k_neighbors=[24, 24, 24, 24], reducers=[2, 2, 2, 2], **kwargs)
|
||
|
||
|
||
def pointMLPElite(num_classes=40, **kwargs) -> Model:
|
||
return Model(points=1024, class_num=num_classes, embed_dim=32, groups=1, res_expansion=0.25,
|
||
activation="relu", bias=False, use_xyz=False, normalize="anchor",
|
||
dim_expansion=[2, 2, 2, 1], pre_blocks=[1, 1, 2, 1], pos_blocks=[1, 1, 2, 1],
|
||
k_neighbors=[24,24,24,24], reducers=[2, 2, 2, 2], **kwargs)
|
||
|
||
if __name__ == '__main__':
|
||
data = torch.rand(2, 3, 1024)
|
||
print("===> testing pointMLP ...")
|
||
model = pointMLP()
|
||
out = model(data)
|
||
print(out.shape)
|
||
|