import emd_cuda import torch class EarthMoverDistanceFunction(torch.autograd.Function): @staticmethod def forward(ctx, xyz1, xyz2): xyz1 = xyz1.contiguous() xyz2 = xyz2.contiguous() assert xyz1.is_cuda and xyz2.is_cuda, "Only support cuda currently." match = emd_cuda.approxmatch_forward(xyz1, xyz2) cost = emd_cuda.matchcost_forward(xyz1, xyz2, match) ctx.save_for_backward(xyz1, xyz2, match) return cost @staticmethod def backward(ctx, grad_cost): xyz1, xyz2, match = ctx.saved_tensors grad_cost = grad_cost.contiguous() grad_xyz1, grad_xyz2 = emd_cuda.matchcost_backward(grad_cost, xyz1, xyz2, match) return grad_xyz1, grad_xyz2 def earth_mover_distance(xyz1, xyz2, transpose=True): """Earth Mover Distance (Approx) Args: xyz1 (torch.Tensor): (b, 3, n1) xyz2 (torch.Tensor): (b, 3, n1) transpose (bool): whether to transpose inputs as it might be BCN format. Extensions only support BNC format. Returns: cost (torch.Tensor): (b) """ if xyz1.dim() == 2: xyz1 = xyz1.unsqueeze(0) if xyz2.dim() == 2: xyz2 = xyz2.unsqueeze(0) if transpose: xyz1 = xyz1.transpose(1, 2) xyz2 = xyz2.transpose(1, 2) cost = EarthMoverDistanceFunction.apply(xyz1, xyz2) return cost