Shape-as-Point/eval_meshes.py
2021-11-08 11:09:50 +01:00

155 lines
5.3 KiB
Python

import torch
import trimesh
from torch.utils.data import Dataset, DataLoader
import numpy as np; np.set_printoptions(precision=4)
import shutil, argparse, time, os
import pandas as pd
from src.data import collate_remove_none, collate_stack_together, worker_init_fn
from src.training import Trainer
from src.model import Encode2Points
from src.data import PointCloudField, IndexField, Shapes3dDataset
from src.utils import load_config, load_pointcloud
from src.eval import MeshEvaluator
from tqdm import tqdm
from pdb import set_trace as st
def main():
parser = argparse.ArgumentParser(description='MNIST toy experiment')
parser.add_argument('config', type=str, help='Path to config file.')
parser.add_argument('--no_cuda', action='store_true', default=False,
help='disables CUDA training')
parser.add_argument('--seed', type=int, default=1, metavar='S', help='random seed (default: 1)')
parser.add_argument('--iter', type=int, metavar='S', help='the training iteration to be evaluated.')
args = parser.parse_args()
cfg = load_config(args.config, 'configs/default.yaml')
use_cuda = not args.no_cuda and torch.cuda.is_available()
device = torch.device("cuda" if use_cuda else "cpu")
data_type = cfg['data']['data_type']
# Shorthands
out_dir = cfg['train']['out_dir']
generation_dir = os.path.join(out_dir, cfg['generation']['generation_dir'])
if cfg['generation'].get('iter', 0)!=0:
generation_dir += '_%04d'%cfg['generation']['iter']
elif args.iter is not None:
generation_dir += '_%04d'%args.iter
print('Evaluate meshes under %s'%generation_dir)
out_file = os.path.join(generation_dir, 'eval_meshes_full.pkl')
out_file_class = os.path.join(generation_dir, 'eval_meshes.csv')
# PYTORCH VERSION > 1.0.0
assert(float(torch.__version__.split('.')[-3]) > 0)
pointcloud_field = PointCloudField(cfg['data']['pointcloud_file'])
fields = {
'pointcloud': pointcloud_field,
'idx': IndexField(),
}
print('Test split: ', cfg['data']['test_split'])
dataset_folder = cfg['data']['path']
dataset = Shapes3dDataset(
dataset_folder, fields,
cfg['data']['test_split'],
categories=cfg['data']['class'], cfg=cfg)
# Loader
test_loader = torch.utils.data.DataLoader(
dataset, batch_size=1, num_workers=0, shuffle=False)
# Evaluator
evaluator = MeshEvaluator(n_points=100000)
eval_dicts = []
print('Evaluating meshes...')
for it, data in enumerate(tqdm(test_loader)):
if data is None:
print('Invalid data.')
continue
mesh_dir = os.path.join(generation_dir, 'meshes')
pointcloud_dir = os.path.join(generation_dir, 'pointcloud')
# Get index etc.
idx = data['idx'].item()
try:
model_dict = dataset.get_model_dict(idx)
except AttributeError:
model_dict = {'model': str(idx), 'category': 'n/a'}
modelname = model_dict['model']
category_id = model_dict['category']
try:
category_name = dataset.metadata[category_id].get('name', 'n/a')
except AttributeError:
category_name = 'n/a'
if category_id != 'n/a':
mesh_dir = os.path.join(mesh_dir, category_id)
pointcloud_dir = os.path.join(pointcloud_dir, category_id)
# Evaluate
pointcloud_tgt = data['pointcloud'].squeeze(0).numpy()
normals_tgt = data['pointcloud.normals'].squeeze(0).numpy()
eval_dict = {
'idx': idx,
'class id': category_id,
'class name': category_name,
'modelname':modelname,
}
eval_dicts.append(eval_dict)
# Evaluate mesh
if cfg['test']['eval_mesh']:
mesh_file = os.path.join(mesh_dir, '%s.off' % modelname)
if os.path.exists(mesh_file):
mesh = trimesh.load(mesh_file, process=False)
eval_dict_mesh = evaluator.eval_mesh(
mesh, pointcloud_tgt, normals_tgt)
for k, v in eval_dict_mesh.items():
eval_dict[k + ' (mesh)'] = v
else:
print('Warning: mesh does not exist: %s' % mesh_file)
# Evaluate point cloud
if cfg['test']['eval_pointcloud']:
pointcloud_file = os.path.join(
pointcloud_dir, '%s.ply' % modelname)
if os.path.exists(pointcloud_file):
pointcloud = load_pointcloud(pointcloud_file).astype(np.float32)
eval_dict_pcl = evaluator.eval_pointcloud(
pointcloud, pointcloud_tgt)
for k, v in eval_dict_pcl.items():
eval_dict[k + ' (pcl)'] = v
else:
print('Warning: pointcloud does not exist: %s'
% pointcloud_file)
# Create pandas dataframe and save
eval_df = pd.DataFrame(eval_dicts)
eval_df.set_index(['idx'], inplace=True)
eval_df.to_pickle(out_file)
# Create CSV file with main statistics
eval_df_class = eval_df.groupby(by=['class name']).mean()
eval_df_class.loc['mean'] = eval_df_class.mean()
eval_df_class.to_csv(out_file_class)
# Print results
print(eval_df_class)
if __name__ == '__main__':
main()