Shape-as-Point/generate.py
2023-05-26 14:59:53 +02:00

223 lines
7.6 KiB
Python

import argparse
import os
import shutil
from collections import defaultdict
import numpy as np
import pandas as pd
import torch
from tqdm import tqdm
from src import config
from src.dpsr import DPSR
from src.model import Encode2Points
from src.utils import (
export_mesh,
export_pointcloud,
is_url,
load_config,
load_model_manual,
load_url,
mc_from_psr,
scale2onet,
)
np.set_printoptions(precision=4)
def main():
parser = argparse.ArgumentParser(description="MNIST toy experiment")
parser.add_argument("config", type=str, help="Path to config file.")
parser.add_argument("--no_cuda", action="store_true", default=False, help="disables CUDA training")
parser.add_argument("--seed", type=int, default=1, metavar="S", help="random seed (default: 1)")
parser.add_argument("--iter", type=int, metavar="S", help="the training iteration to be evaluated.")
args = parser.parse_args()
cfg = load_config(args.config, "configs/default.yaml")
use_cuda = not args.no_cuda and torch.cuda.is_available()
device = torch.device("cuda" if use_cuda else "cpu")
cfg["data"]["data_type"]
cfg["data"]["input_type"]
vis_n_outputs = cfg["generation"]["vis_n_outputs"]
if vis_n_outputs is None:
vis_n_outputs = -1
# Shorthands
out_dir = cfg["train"]["out_dir"]
if not out_dir:
os.makedirs(out_dir)
generation_dir = os.path.join(out_dir, cfg["generation"]["generation_dir"])
out_time_file = os.path.join(generation_dir, "time_generation_full.pkl")
out_time_file_class = os.path.join(generation_dir, "time_generation.pkl")
# PYTORCH VERSION > 1.0.0
assert float(torch.__version__.split(".")[-3]) > 0
dataset = config.get_dataset("test", cfg, return_idx=True)
test_loader = torch.utils.data.DataLoader(dataset, batch_size=1, num_workers=0, shuffle=False)
model = Encode2Points(cfg).to(device)
# load model
try:
if is_url(cfg["test"]["model_file"]):
state_dict = load_url(cfg["test"]["model_file"])
elif cfg["generation"].get("iter", 0) != 0:
state_dict = torch.load(os.path.join(out_dir, "model", "%04d.pt" % cfg["generation"]["iter"]))
generation_dir += "_%04d" % cfg["generation"]["iter"]
elif args.iter is not None:
state_dict = torch.load(os.path.join(out_dir, "model", "%04d.pt" % args.iter))
else:
state_dict = torch.load(os.path.join(out_dir, "model_best.pt"))
load_model_manual(state_dict["state_dict"], model)
except:
print("Model loading error. Exiting.")
exit()
# Generator
generator = config.get_generator(model, cfg, device=device)
# Determine what to generate
generate_mesh = cfg["generation"]["generate_mesh"]
generate_pointcloud = cfg["generation"]["generate_pointcloud"]
# Statistics
time_dicts = []
# Generate
model.eval()
dpsr = DPSR(
res=(
cfg["generation"]["psr_resolution"],
cfg["generation"]["psr_resolution"],
cfg["generation"]["psr_resolution"],
),
sig=cfg["generation"]["psr_sigma"],
).to(device)
# Count how many models already created
model_counter = defaultdict(int)
print("Generating...")
for _it, data in enumerate(tqdm(test_loader)):
# Output folders
mesh_dir = os.path.join(generation_dir, "meshes")
in_dir = os.path.join(generation_dir, "input")
pointcloud_dir = os.path.join(generation_dir, "pointcloud")
generation_vis_dir = os.path.join(generation_dir, "vis")
# Get index etc.
idx = data["idx"].item()
try:
model_dict = dataset.get_model_dict(idx)
except AttributeError:
model_dict = {"model": str(idx), "category": "n/a"}
modelname = model_dict["model"]
category_id = model_dict["category"]
try:
category_name = dataset.metadata[category_id].get("name", "n/a")
except AttributeError:
category_name = "n/a"
if category_id != "n/a":
mesh_dir = os.path.join(mesh_dir, str(category_id))
pointcloud_dir = os.path.join(pointcloud_dir, str(category_id))
in_dir = os.path.join(in_dir, str(category_id))
folder_name = str(category_id)
if category_name != "n/a":
folder_name = str(folder_name) + "_" + category_name.split(",")[0]
generation_vis_dir = os.path.join(generation_vis_dir, folder_name)
# Create directories if necessary
if vis_n_outputs >= 0 and not os.path.exists(generation_vis_dir):
os.makedirs(generation_vis_dir)
if generate_mesh and not os.path.exists(mesh_dir):
os.makedirs(mesh_dir)
if generate_pointcloud and not os.path.exists(pointcloud_dir):
os.makedirs(pointcloud_dir)
if not os.path.exists(in_dir):
os.makedirs(in_dir)
# Timing dict
time_dict = {
"idx": idx,
"class id": category_id,
"class name": category_name,
"modelname": modelname,
}
time_dicts.append(time_dict)
# Generate outputs
out_file_dict = {}
if generate_mesh:
#! deploy the generator to a separate class
out = generator.generate_mesh(data)
v, f, points, normals, stats_dict = out
time_dict.update(stats_dict)
# Write output
mesh_out_file = os.path.join(mesh_dir, "%s.off" % modelname)
export_mesh(mesh_out_file, scale2onet(v), f)
out_file_dict["mesh"] = mesh_out_file
if generate_pointcloud:
pointcloud_out_file = os.path.join(pointcloud_dir, "%s.ply" % modelname)
export_pointcloud(pointcloud_out_file, scale2onet(points), normals)
out_file_dict["pointcloud"] = pointcloud_out_file
if cfg["generation"]["copy_input"]:
inputs_path = os.path.join(in_dir, "%s.ply" % modelname)
p = data.get("inputs").to(device)
export_pointcloud(inputs_path, scale2onet(p))
out_file_dict["in"] = inputs_path
# Copy to visualization directory for first vis_n_output samples
c_it = model_counter[category_id]
if c_it < vis_n_outputs:
# Save output files
"%02d.off" % c_it
for k, filepath in out_file_dict.items():
ext = os.path.splitext(filepath)[1]
out_file = os.path.join(generation_vis_dir, "%02d_%s%s" % (c_it, k, ext))
shutil.copyfile(filepath, out_file)
# Also generate oracle meshes
if cfg["generation"]["exp_oracle"]:
points_gt = data.get("gt_points").to(device)
normals_gt = data.get("gt_points.normals").to(device)
psr_gt = dpsr(points_gt, normals_gt)
v, f, _ = mc_from_psr(psr_gt, zero_level=cfg["data"]["zero_level"])
out_file = os.path.join(generation_vis_dir, "%02d_%s%s" % (c_it, "mesh_oracle", ".off"))
export_mesh(out_file, scale2onet(v), f)
model_counter[category_id] += 1
# Create pandas dataframe and save
time_df = pd.DataFrame(time_dicts)
time_df.set_index(["idx"], inplace=True)
time_df.to_pickle(out_time_file)
# Create pickle files with main statistics
time_df_class = time_df.groupby(by=["class name"]).mean()
time_df_class.loc["mean"] = time_df_class.mean()
time_df_class.to_pickle(out_time_file_class)
# Print results
print("Timings [s]:")
print(time_df_class)
if __name__ == "__main__":
main()