185 lines
6.9 KiB
Python
185 lines
6.9 KiB
Python
import os
|
|
|
|
abspath = os.path.abspath(__file__)
|
|
dname = os.path.dirname(abspath)
|
|
os.chdir(dname)
|
|
|
|
import torch
|
|
import torch.optim as optim
|
|
import open3d as o3d
|
|
|
|
import numpy as np; np.set_printoptions(precision=4)
|
|
import shutil, argparse, time
|
|
from torch.utils.tensorboard import SummaryWriter
|
|
|
|
from src import config
|
|
from src.data import collate_remove_none, collate_stack_together, worker_init_fn
|
|
from src.training import Trainer
|
|
from src.model import Encode2Points
|
|
from src.utils import load_config, initialize_logger, \
|
|
AverageMeter, load_model_manual
|
|
|
|
|
|
def main():
|
|
parser = argparse.ArgumentParser(description='MNIST toy experiment')
|
|
parser.add_argument('config', type=str, help='Path to config file.')
|
|
parser.add_argument('--no_cuda', action='store_true', default=False,
|
|
help='disables CUDA training')
|
|
parser.add_argument('--seed', type=int, default=1, metavar='S', help='random seed (default: 1)')
|
|
|
|
args = parser.parse_args()
|
|
cfg = load_config(args.config, 'configs/default.yaml')
|
|
use_cuda = not args.no_cuda and torch.cuda.is_available()
|
|
device = torch.device("cuda" if use_cuda else "cpu")
|
|
input_type = cfg['data']['input_type']
|
|
batch_size = cfg['train']['batch_size']
|
|
model_selection_metric = cfg['train']['model_selection_metric']
|
|
|
|
# PYTORCH VERSION > 1.0.0
|
|
assert(float(torch.__version__.split('.')[-3]) > 0)
|
|
|
|
# boiler-plate
|
|
if cfg['train']['timestamp']:
|
|
cfg['train']['out_dir'] += '_' + time.strftime("%Y_%m_%d_%H_%M_%S")
|
|
logger = initialize_logger(cfg)
|
|
torch.manual_seed(args.seed)
|
|
np.random.seed(args.seed)
|
|
shutil.copyfile(args.config, os.path.join(cfg['train']['out_dir'], 'config.yaml'))
|
|
|
|
logger.info("using GPU: " + torch.cuda.get_device_name(0))
|
|
|
|
# TensorboardX writer
|
|
tblogdir = os.path.join(cfg['train']['out_dir'], "tensorboard_log")
|
|
if not os.path.exists(tblogdir):
|
|
os.makedirs(tblogdir, exist_ok=True)
|
|
writer = SummaryWriter(log_dir=tblogdir)
|
|
|
|
|
|
inputs = None
|
|
train_dataset = config.get_dataset('train', cfg)
|
|
val_dataset = config.get_dataset('val', cfg)
|
|
vis_dataset = config.get_dataset('vis', cfg)
|
|
|
|
|
|
collate_fn = collate_remove_none
|
|
|
|
train_loader = torch.utils.data.DataLoader(
|
|
train_dataset, batch_size=batch_size, num_workers=cfg['train']['n_workers'], shuffle=True,
|
|
collate_fn=collate_fn,
|
|
worker_init_fn=worker_init_fn)
|
|
|
|
val_loader = torch.utils.data.DataLoader(
|
|
val_dataset, batch_size=1, num_workers=cfg['train']['n_workers_val'], shuffle=False,
|
|
collate_fn=collate_remove_none,
|
|
worker_init_fn=worker_init_fn)
|
|
|
|
vis_loader = torch.utils.data.DataLoader(
|
|
vis_dataset, batch_size=1, num_workers=cfg['train']['n_workers_val'], shuffle=False,
|
|
collate_fn=collate_fn,
|
|
worker_init_fn=worker_init_fn)
|
|
|
|
if torch.cuda.device_count() > 1:
|
|
model = torch.nn.DataParallel(Encode2Points(cfg)).to(device)
|
|
else:
|
|
model = Encode2Points(cfg).to(device)
|
|
|
|
n_parameter = sum(p.numel() for p in model.parameters() if p.requires_grad)
|
|
logger.info('Number of parameters: %d'% n_parameter)
|
|
# load model
|
|
try:
|
|
# load model
|
|
state_dict = torch.load(os.path.join(cfg['train']['out_dir'], 'model.pt'))
|
|
load_model_manual(state_dict['state_dict'], model)
|
|
|
|
out = "Load model from iteration %d" % state_dict.get('it', 0)
|
|
logger.info(out)
|
|
# load point cloud
|
|
except:
|
|
state_dict = dict()
|
|
|
|
metric_val_best = state_dict.get(
|
|
'loss_val_best', np.inf)
|
|
|
|
logger.info('Current best validation metric (%s): %.8f'
|
|
% (model_selection_metric, metric_val_best))
|
|
|
|
LR = float(cfg['train']['lr'])
|
|
optimizer = optim.Adam(model.parameters(), lr=LR)
|
|
|
|
start_epoch = state_dict.get('epoch', -1)
|
|
it = state_dict.get('it', -1)
|
|
|
|
trainer = Trainer(cfg, optimizer, device=device)
|
|
runtime = {}
|
|
runtime['all'] = AverageMeter()
|
|
|
|
# training loop
|
|
for epoch in range(start_epoch+1, cfg['train']['total_epochs']+1):
|
|
|
|
for batch in train_loader:
|
|
it += 1
|
|
|
|
start = time.time()
|
|
loss, loss_each = trainer.train_step(inputs, batch, model)
|
|
|
|
# measure elapsed time
|
|
end = time.time()
|
|
runtime['all'].update(end - start)
|
|
|
|
if it % cfg['train']['print_every'] == 0:
|
|
log_text = ('[Epoch %02d] it=%d, loss=%.4f') %(epoch, it, loss)
|
|
writer.add_scalar('train/loss', loss, it)
|
|
if loss_each is not None:
|
|
for k, l in loss_each.items():
|
|
if l.item() != 0.:
|
|
log_text += (' loss_%s=%.4f') % (k, l.item())
|
|
writer.add_scalar('train/%s' % k, l, it)
|
|
|
|
log_text += (' time=%.3f / %.2f') % (runtime['all'].val, runtime['all'].sum)
|
|
logger.info(log_text)
|
|
|
|
if (it>0)& (it % cfg['train']['visualize_every'] == 0):
|
|
for i, batch_vis in enumerate(vis_loader):
|
|
trainer.save(model, batch_vis, it, i)
|
|
if i >= 4:
|
|
break
|
|
logger.info('Saved mesh and pointcloud')
|
|
|
|
# run validation
|
|
if it > 0 and (it % cfg['train']['validate_every']) == 0:
|
|
eval_dict = trainer.evaluate(val_loader, model)
|
|
metric_val = eval_dict[model_selection_metric]
|
|
logger.info('Validation metric (%s): %.4f'
|
|
% (model_selection_metric, metric_val))
|
|
|
|
for k, v in eval_dict.items():
|
|
writer.add_scalar('val/%s' % k, v, it)
|
|
|
|
if -(metric_val - metric_val_best) >= 0:
|
|
metric_val_best = metric_val
|
|
logger.info('New best model (loss %.4f)' % metric_val_best)
|
|
state = {'epoch': epoch,
|
|
'it': it,
|
|
'loss_val_best': metric_val_best}
|
|
state['state_dict'] = model.state_dict()
|
|
torch.save(state, os.path.join(cfg['train']['out_dir'], 'model_best.pt'))
|
|
|
|
# save checkpoint
|
|
if (epoch > 0) & (it % cfg['train']['checkpoint_every'] == 0):
|
|
state = {'epoch': epoch,
|
|
'it': it,
|
|
'loss_val_best': metric_val_best}
|
|
pcl = None
|
|
state['state_dict'] = model.state_dict()
|
|
|
|
torch.save(state, os.path.join(cfg['train']['out_dir'], 'model.pt'))
|
|
|
|
if (it % cfg['train']['backup_every'] == 0):
|
|
torch.save(state, os.path.join(cfg['train']['dir_model'], '%04d' % it + '.pt'))
|
|
logger.info("Backup model at iteration %d" % it)
|
|
logger.info("Save new model at iteration %d" % it)
|
|
|
|
done=time.time()
|
|
|
|
if __name__ == '__main__':
|
|
main() |