TP-modelisation/BE2019/why3-exercice-4/why3mnexercicemn4_Somme_VC_somme_1.v

45 lines
759 B
Coq
Raw Normal View History

2023-06-10 18:56:24 +00:00
(* This file is generated by Why3's Coq driver *)
(* Beware! Only edit allowed sections below *)
Require Import BuiltIn.
Require BuiltIn.
Require int.Int.
Require int.Abs.
Require int.ComputerDivision.
(* Why3 assumption *)
Inductive ref (a:Type) :=
| mk_ref : a -> ref a.
Axiom ref_WhyType : forall (a:Type) {a_WT:WhyType a}, WhyType (ref a).
Existing Instance ref_WhyType.
Arguments mk_ref {a}.
(* Why3 assumption *)
Definition contents {a:Type} {a_WT:WhyType a} (v:ref a) : a :=
match v with
| mk_ref x => x
end.
Parameter n: Z.
Parameter r: Z.
Parameter i: Z.
Axiom H : (i < n)%Z.
Parameter i1: Z.
Axiom H1 : (i1 = (i + 1%Z)%Z).
Parameter r1: Z.
Axiom H2 : (r1 = (r + i1)%Z).
(* Why3 goal *)
Theorem VC_somme : False.
Proof.
Qed.