TP-modelisation/BE2019/Naturelle.v
2023-06-10 20:56:24 +02:00

293 lines
4.9 KiB
Coq
Executable file

Require Export Classical.
Ltac Hyp Nom := exact Nom.
Ltac I_imp' :=
match goal with
| |- ?A -> ?B => let hyp := fresh "H" in intro hyp
| _ => fail
end.
Ltac I_imp Nom :=
match goal with
| |- ?A -> ?B => intro Nom
| _ => fail
end.
Theorem E_imp_th : forall (phi psi : Prop), (phi -> psi) -> phi -> psi.
intros Pphi Ppsi Hphi2psi.
Hyp Hphi2psi.
Qed.
Ltac E_imp' :=
match goal with
| |- ?P => eapply (E_imp_th _ P)
end.
Ltac E_imp phi :=
match goal with
| |- ?P => apply (E_imp_th phi P)
end.
Ltac I_forall' :=
match goal with
| |- forall (x : ?A), ?P => let hyp := fresh x in intro hyp
| _ => fail
end.
Ltac I_forall Nom :=
match goal with
| |- forall (x : ?A), ?P => intro Nom
| _ => fail
end.
Theorem E_forall_th : forall (A : Type) (phi : A -> Prop) a, (forall x, phi x) -> phi a.
Proof.
firstorder.
Qed.
Ltac E_forall x :=
pattern x;
match goal with
| |- (?P x) => apply (E_forall_th _ P x)
| _ => fail
end.
Ltac I_et :=
match goal with
| |- (?A /\ ?B) => apply (@conj A B)
| _ => fail
end.
Theorem E_et_g_th : forall (phi psi : Prop), (phi /\ psi) -> phi.
intros Pphi Ppsi Hphi_et_psi.
elim Hphi_et_psi.
intros Hphi Hpsi.
Hyp Hphi.
Qed.
Ltac E_et_g' :=
match goal with
| |- ?P => eapply (E_et_g_th P _)
end.
Ltac E_et_g psi :=
match goal with
| |- ?P => apply (E_et_g_th P psi)
end.
Theorem E_et_d_th : forall (phi psi : Prop), (phi /\ psi) -> psi.
intros Pphi Ppsi H_phi_et_psi.
elim H_phi_et_psi.
intros Hphi Hpsi.
Hyp Hpsi.
Qed.
Ltac E_et_d' :=
match goal with
| |- ?P => eapply (E_et_d_th _ P)
end.
Ltac E_et_d phi :=
match goal with
| |- ?P => eapply (E_et_d_th phi P)
end.
Theorem E_ou_th : forall (phi psi chi : Prop), (phi \/ psi) -> (phi -> chi) -> (psi -> chi) -> chi.
intros Pphi Ppsi Pchi Hphi_ou_psi Hphi_imp_chi Hpsi_imp_chi.
elim Hphi_ou_psi.
Hyp Hphi_imp_chi.
Hyp Hpsi_imp_chi.
Qed.
Ltac E_ou' :=
match goal with
| |- ?P => eapply (E_ou_th _ _ P)
end.
Ltac E_ou phi psi :=
match goal with
| |- ?P => apply (E_ou_th phi psi P)
end.
Ltac I_ou_g :=
match goal with
| |- (?A \/ ?B) => apply (@or_introl A B)
| _ => fail
end.
Ltac I_ou_d :=
match goal with
| |- (?A \/ ?B) => apply (@or_intror A B)
| _ => fail
end.
Ltac I_exists' :=
match goal with
| |- exists (x : ?A), (@?P x) => eapply (@ex_intro A P _)
| _ => fail
end.
Ltac I_exists t :=
match goal with
| |- exists (x : ?A), (@?P x) => apply (@ex_intro _ P t)
| _ => fail
end.
Theorem E_exists_th : forall (A : Type) (phi : A -> Prop) (chi : Prop), (exists x, phi x) -> (forall a, phi a -> chi) -> chi.
Proof.
firstorder.
Qed.
(*
Ltac E_exists phi :=
match goal with
| |- ?P => apply (E_exists_th _ phi P)
end.
*)
Ltac E_exists phi :=
match goal with
| |- ?P => apply (E_exists_th _ phi P); [ idtac | let t := fresh "t" in let ht := fresh "Ht" in intros t ht ]
end.
Ltac TE :=
unfold not;
match goal with
| |- (?P \/ (?P -> False)) => exact (classic P)
| _ => fail
end.
Theorem E_antiT_th : forall (phi : Prop), False -> phi.
intros Pphi F.
elim F.
Qed.
Ltac E_antiT :=
match goal with
| |- ?P => apply (E_antiT_th P)
end.
Theorem I_antiT_th : forall (phi : Prop), phi -> (~phi) -> False.
unfold not.
intro Pphi.
intros Hphi Hnphi.
cut Pphi.
Hyp Hnphi.
Hyp Hphi.
Qed.
Ltac I_antiT phi :=
match goal with
| |- False => apply (I_antiT_th phi)
end.
Theorem I_non_th : forall (phi : Prop), (phi -> False) -> ~phi.
intros.
unfold not.
exact H.
Qed.
Ltac I_non Nom :=
match goal with
| |- ~ ?P => apply (I_non_th P); intro Nom
end.
Ltac E_non phi :=
apply (I_antiT_th phi).
Ltac absurde Nom :=
match goal with
| |- ?P => apply (NNPP P); intro Nom
end.
(*
Ltac I_antiT phi := apply (I_antiT_th phi).
Ltac absurde Nom phi :=
match goal with
| |- phi =>
cut (phi \/ ~phi);
[
intros L;
elim L;
[
auto
|
clear L;
intro Nom;
apply (E_antiT_th)
]
|
apply (classic phi)
]
| _ => fail
end.
*)
Variable E Y R : Prop.
Theorem Yoga : ((E -> (Y \/ R)) /\ (Y -> R)) -> ~R -> ~E.
Proof.
I_imp H1.
I_imp H2.
I_non H3.
I_antiT R.
E_ou Y R.
E_imp E.
E_et_g (Y -> R).
Hyp H1.
Hyp H3.
E_et_d (E -> Y \/ R).
Hyp H1.
I_imp H4.
Hyp H4.
Hyp H2.
Qed.
Variable phi psi : Prop.
Theorem contra : (phi -> psi) -> (~psi -> ~phi).
I_imp H1.
I_imp H2.
I_non H3.
I_antiT psi.
E_imp phi.
Hyp H1.
Hyp H3.
Hyp H2.
Qed.
Theorem P2nnP : phi -> ~~phi.
I_imp H1.
I_non H2.
I_antiT phi.
Hyp H1.
Hyp H2.
Qed.
Theorem nnP2P : ~~ phi -> phi.
I_imp H1.
absurde H2.
E_non (~phi).
Hyp H2.
Hyp H1.
Qed.
Variable A : Type.
Variable chi : A -> A -> Prop.
Theorem Swap : (exists y, forall x, chi x y) -> (forall x, exists y, chi x y).
Proof.
I_imp H1.
I_forall x.
E_exists (fun y => forall x : A, chi x y).
Hyp H1.
I_exists t.
E_forall x.
Hyp Ht.
Qed.