Je tiens à remercier Xavier Roynard, Michel Alessandro Bucci et Brian Staber, mes tuteurs de stage, ainsi que les équipes de \gls{ssa} pour leur accueil et leur accompagnement tout au long de ce stage.
J'aimerais également remercier l'ensemble de mes professeurs de l'\gls{n7}, pour m'avoir permis d'acquérir les connaissances nécessaires à la réalisation de ce projet.
\clearpage
{
\hypersetup{hidelinks}
\addcontentsline{toc}{chapter}{Table des matières}
\tableofcontents
}
\clearpage
{
\hypersetup{hidelinks}
\addcontentsline{toc}{chapter}{Table des figures}
\listoffigures
}
\clearpage
{
\hypersetup{hidelinks}
\addcontentsline{toc}{chapter}{Glossaire}
\printnoidxglossaries
}
% {
% \hypersetup{hidelinks}
% \addcontentsline{toc}{chapter}{Nomenclature}
% \printnomenclature
% }
% \listoftables
% \addcontentsline{toc}{chapter}{Liste des tableaux}
Dans le domaine industriel, les codes de simulation numérique sont désormais un outil indispensable pour la conception de systèmes complexes, en particulier pour les modules de réacteurs d'avions ou d'hélicoptères.
De telles simulations sont par exemple utilisées pour évaluer les performances aérodynamiques d'un composant tel qu'une aube de turbine. En partant d'une géométrie de nominale, dans la phase d'optimisation, la pièce est progressivement modifiée afin d'optimiser certaines quantités d'intérêt.
Malheureusement, ce processus de conception itératif présente deux limites:
\begin{itemize}
\item Le coût de calcul d'une simulation numérique de type \gls{cfd} est lourd, plusieurs heures sont nécessaires pour un unique calcul.
\item Le nombre de degrés de liberté pour la géométrie d'un profil complexe discrétisée avec un maillage non structuré est important, ce qui rend impossible l'exploration complète de l'espace de recherche de la solution optimale.
\end{itemize}
\smallskip
Les approches d'optimisation assistées par surfaces de réponse permettent de répondre partiellement à ces difficultés. Cependant cette stratégie admet deux limitations intrinsèques:
\begin{itemize}
\item Elles nécessitent un long de travail de paramétrisation.
\item Elles souffrent grandement du fléau de la dimension, i.e. la taille des problèmes considérés est généralement limitée.
\end{itemize}
\smallskip
En particulier, une représentation latente parcimonieuse de la géométrie faciliterait l'exploration de l'espace de recherche et l'utilisation de métamodèles classiques pour la prédiction des quantités d'intérêt.
Récemment, les modèles génératifs profonds comme les \gls{vae} ou les \gls{gan} ont été appliqués avec succès à des données structurées (typiquement des images). Ceux-ci permettent de construire un espace latent représentatif d'un jeu de données donné et de générer de nouveaux échantillons qui partagent des caractéristiques importantes du jeu de données d'entraînement.
Cependant, dans le cas de la simulation numérique, les données prennent souvent la forme de graphes en raison de l'utilisation de maillages pour représenter les surfaces pièces à concevoir. Dans le contexte d'une application industrielle, il est donc crucial d'adapter les modèles susmentionnés afin de pouvoir utiliser des données non structurées en entrée. Les \gls{gnn} permettent de traiter des données non structurées telles que des maillages ou des nuages de points.
Différentes solutions pour ont été proposées dans la littérature pour réaliser des convolutions et agrégations sur graphes ou nuages de points. Cependant, peu d'entre elles conviennent à l'application des réseaux sur graphes sur des données générées par des simulations numériques.
Le but de ce stage est d'évaluer le potentiel de ces nouvelles méthodes sur des jeux de données réalisés en internes et représentatifs pour \gls{ssa}. Et éventuellement de proposer des améliorations spécifiques aux maillages utilisés en simulations numériques.
L'étude vise tout d'abord à étudier la bibliographie disponible d'un côté sur les modèles génératifs et d'un autre sur les réseaux convolutionnels sur graphes. L'objectif est, dans une première phase, de faire un benchmark des différentes solutions de modèles génératifs sur graphe de type \gls{vae} et \gls{gan} afin de créer une représentation latente des géométries d'aubes 3D. Pour cela un dataset avec quelques milliers d'échantillons d'aubes 3D et leurs performances aérodynamique est disponible à \gls{ssa}. Le modèle résultant sera ensuite testé pour générer de nouvelles géométries et pour prédire les quantités d'intérêt par le biais de métamodèles classiques. Enfin, si l'avancement sur les premières tâches le permet, d'autres modèles génératifs peuvent être considérés comme le \gls{nf} ou les \gls{vdm}.
Dans le cadre de cette étude, nous nous intéressons à la génération de géométries d'aubes de turbines. Ces géométries font parties d'une modalitées de données peu commune, les maillages (qui sont un type de graphes) ou les nuages de points. Ces modalités sont relativement peu étudiée dans la littérature de l'apprentissage automatique comparé aux modalités plus classique comme les images, le texte ou encore l'audio. En effet, ces données sont non structurées et il est donc nécessaire d'utiliser des méthodes spécifiques pour les traiter.
Il reste pertinent de noter que les méthodes présentées dans ce chapitre sont récentes et que la littérature évolue très rapidement. De plus, les méthodes présentées ici sont très nombreuses et il est impossible de toutes les présenter. Nous avons donc choisi de présenter les méthodes les plus pertinentes pour permettre une bonne compréhension globale du travail réalisé durant ce stage.
Les graphes sont des structures de données qui permettent de représenter des relations entre des entités. Un graphe est défini par un ensemble de nœuds et un ensemble d'arêtes. Les arêtes représentent des relations entre les nœuds. Ces relations peuvent être de différents types, comme des relations de parenté, de proximité ou encore de similarité. Les graphes peuvent être dirigés ou non. Dans le cas d'un graphe dirigé, les arêtes sont orientées et représentent une relation unidirectionnelle. Dans le cas d'un graphe non dirigé, les arêtes ne sont pas orientées et représentent une relation bidirectionnelle. Les graphes peuvent être pondérés ou non. Dans le cas d'un graphe pondéré, les arêtes sont associées à une valeur qui représente l'intensité de la relation entre les nœuds.
Les graphes offrent une représentation intuitive de diverses structures telles que les réseaux de communication, les réseaux sociaux, les molécules ou encore les maillages. Par conséquent, les graphes sont un type de données largement présents dans la nature et sont très répandu dans le domaine de l'ingénierie. De manière générale, les graphes peuvent être considérés comme une généralisation des données structurées, telles que les images ou les séries temporelles. En effet, toute données structurées peut facilement être traduite en un graphe régulier.
Les \gls{gnn} sont une famille de modèles qui permettent de traiter ce type de structures de données. Ces modèles sont majoritairement basés sur des opérations de convolution et d'agrégation, similairement aux opérations de convolution et de pooling utilisées dans les réseaux de neurones pour les modalités plus classique comme les images.
On retrouve de même dans les \gls{gnn} des architectures avancées, inspirées des réseaux de neurones classiques, comme les réseaux résiduels\cite{gao_graph_2019}, les réseaux récurrents\cite{li_gated_2017} ou l'attention\cite{velickovic_graph_2018,brody_how_2022}.
% Mais on retrouve aussi des architectures spécifiques aux \gls{gnn} comme PointNet\cite{qi_pointnet_2017,qi_pointnet_2017-1} ou GraphSAGE\cite{hamilton_inductive_2017}, qui ne permettent de traiter uniquement que des données non structurées
Les applications les plus courantes de ces réseaux incluent la classification\cite{kipf_semi-supervised_2017} de documents, la détection de fraudes\cite{ma_comprehensive_2021} et les systèmes de recommandation\cite{gao_survey_2023}. En revanche, la génération de graphes est moins répandue et se limite souvent dans la littérature à la génération de petites molécules\cite{kipf_graph_2020,simonovsky_graphvae_2018}.
Les modèles génératifs sont une famille de modèles qui permettent de générer de nouvelles données d'une distribution de données au préalablement apprise. Ces modèles sont très utilisés dans le domaine de l'apprentissage automatique pour générer des images, du texte ou encore de la musique. Ces modèles sont encore relativement peu utilisés dans le domaine de l'ingénierie pour générer des pièces industrielles.
Il existe plusieurs sous familles de modèles génératifs, chacune basées sur des principes différents, possédant ainsi des avantages et des inconvénients. Il est donc important de bien comprendre les différences entre ces modèles pour pouvoir choisir le modèle le plus adapté à la problématique. Plusieurs études ont déjà été réalisées pour comparer ces modèles, nous nous baserons donc partiellement sur ces études\cite{faez_deep_2020,guo_systematic_2022,zhu_survey_2022} pour présenter les modèles les plus pertinents pour notre problématique.
Les \gls{gan} sont la famille de modèles génératifs la plus renommée et également la plus ancienne\cite{goodfellow_generative_2014}. Ces modèles reposent sur un principe compétitif impliquant deux réseaux de neurones. Le premier réseau, connu sous le nom de générateur, a pour objectif de produire de nouvelles données. Le deuxième réseau, appelé discriminateur, est chargé de distinguer les données générées par le générateur des données réelles. Le générateur est entraîné à tromper le discriminateur tandis que le discriminateur est entraîné à identifier les données générées par rapport aux données réelles. Cette compétition entre les deux réseaux permet de former le générateur à générer des données de plus en plus réalistes. Ce type d'apprentissage est auto-supervisé, car il ne nécessite pas l'utilisation d'annotations sur les données pour entraîner le modèle.
Les \gls{gan} ont su démontrer leur efficacité pour générer des images réalistes. Cependant, ces modèles sont très difficiles à entraîner\cite{arjovsky_towards_2017}. Les \gls{gan} sont par exemple suceptible au problème des \textit{mode collapse}, où le générateur génère toujours la même image, au problème de \textit{non convergence}, où le générateur et/ou le discriminateur ont une fonction de cout instable et ne convergent ainsi pas vers un équilibre de Nash, ou encore au problème de \textit{vanishing gradient}, où le discriminateur devient trop efficace et empêche le générateur d'apprendre.
Au fil des années, de nombreuses améliorations\cite{salimans_improved_2016}, variations ((WGAN\cite{arjovsky_wasserstein_2017}, etc.) et cas d'applications (CycleGAN\cite{zhu_unpaired_2020}, SGAN\cite{odena_semi-supervised_2016}, DiscoGAN\cite{kim_learning_2017}, SRGAN\cite{ledig_photo-realistic_2017}, etc.) ont été proposées, mais ces modèles restent complexes à entraîner et à évaluer. De plus, ces modèles sont très sensibles aux hyperparamètres et nécessitent une grande quantité de données pour être efficaces.
Face à ces inconvénients, et puisque nous ne possédons pas de grandes quantités de données, nous avons choisi de ne pas utiliser cette famille de modèles.
Les \gls{vae} constituent une autre famille de modèles génératifs, également bien connue comme les \gls{gan} et sont relativement anciens\cite{kingma_auto-encoding_2022,kipf_variational_2016,doersch_tutorial_2021}. Ces modèles reposent sur l'entraînement simultané de deux réseaux de neurones : un encodeur et un décodeur. L'objectif de l'encodeur est de transformer les données d'entrée en une distribution de probabilité, tandis que le décodeur génère de nouvelles données à partir de cette distribution. Comme pour les GAN, ces modèles visent à estimer une distribution de données qui se rapproche le plus possible de la distribution des données d'entraînement, c'est-à-dire qu'ils apprennent à reproduire fidèlement les données d'origine.
La particularité des \gls{vae} réside dans l'espace latent intermédiaire entre l'encodeur et le décodeur. Cette dimension latente est définie par l'architecture du réseau et peut être réduite à volonté. L'encodeur et le décodeur peuvent ainsi être considérés comme des opérateurs de compression et de décompression.
L'intéret de cet espace latent est qu'il permet de générer de nouvelles données en interpolant entre deux points de cet espace. De même, il permet de générer de nouvelles données en modifiant légèrement un point spécifique de cet espace. Ces deux caractéristiques permettent la génération de nouvelles données à partir de données existantes, ce qui se révèle extrêmement utile dans le domaine de l'ingénierie, offrant ainsi des possibilités de création et de conception de nouvelles données basées sur des modèles existants.
Tout comme les \gls{gan}, de nombreuses améliorations\cite{burgess_understanding_2018,higgins_beta-vae_2022,alemi_deep_2019,su_f-vaes_2018} et variations\cite{kim_setvae_2021,shah_auto-decoding_2020,simonovsky_graphvae_2018} ont été proposées pour les \gls{vae}. Ces modèles sont plus faciles à entraîner que les \gls{gan} et présentent une plus grande stabilité. Cependant, les \gls{vae} ont tendance à générer des données floues et peu réalistes\cite{yacoby_failure_2021}, et en général produisent des résultats de moins bonne qualité que les \gls{gan}, en particulier pour des résolutions élevées.
nous avons choisi d'explorer ces modèles dans un premier temps lors de nos experiementations.
Les \gls{nf} sont une autre classe de modèles génératifs qui ont gagné en popularité ces dernières années. Ces modèles se basent des transformations inversibles (bijectives) et différentiables. Ces transformations sont appliquées à une distribution de base, généralement une distribution simple comme une gaussienne, pour obtenir une distribution plus complexe et plus proche de la distribution des données réelles.
Les transformations inversibles utilisées dans les \gls{nf} sont souvent paramétrisées par des réseaux de neurones, ce qui permet d'apprendre des fonctions non linéaires complexes. En utilisant plusieurs transformations en séquence, on peut construire des modèles génératifs flexibles capables de capturer des distributions complexes.
Dans la littérature, ces réseaux sont assez peu appliqué aux types de données qui nous intéressent, à l'exception notable de PointFlow\cite{yang_pointflow_2019} qui aura posé certaines bases pour évaluer les réseaux génératifs de pointclouds.
Les \gls{vdm} sont la famille de réseaux générateurs la plus récente et aussi la plus performante. La manière la plus simple de décrire ces modèles est de les considérer comme une mélange des \gls{vae} et des \gls{nf}. En effet, le principe des \gls{vdm} est de trouver un processus réversible entre notre distribution de données et distribution totalement différente, mais que l'on connait de préférence parfaitement mathématiquement, comme une gaussienne isentropique par exemple. Dans leur architecture, les \gls{vdm} peuvent être vus comme des \gls{vae} hiérarchiques où la taille de la dimension latente est égale à celle des données d'entrée, où les encodeurs ne sont pas appris, mais sont déterminés par le processus de diffusion. De même, contrairement aux \gls{nf}, les \gls{vdm} ne sont pas basés sur des transformations déterministes et continues, mais sur des transformations stochastiques et discrètes.
Il peut cependant être montré théoriquement\cite{luo_understanding_2022} l'équivalence entre les \gls{vdm} et les méthodes de score matching lorsque que T tend vers l'infini. Les méthodes de score matching sont une famille de méthodes qui permettent d'estimer la densité de probabilité d'un ensemble de données en travaillant uniquement le gradient de la densité de probabilité. mécanique langevin pour estime la distrib à partir du gradient.
Plusieurs sous-familles de modèles existent pour faire de la diffusion, la plus connue d'entre elles étant les \gls{ddpm}\cite{ho_denoising_2020}. Cette moéthode consiste à trouver un mapping réversible entre nos données et du bruit gaussien.
% descritpion du training bref
% description du sampling bref
Une fois notre modèle correctement entrainés, nous somme donc capable de débruiter nos données. Le plus intéréessant est cependant lorsque nous demandons à notre réseau de débruiter du bruit pure. Le réseau se met alors à halluciner quelque chose qui ressemble fortement à nos données d'entraiments.
Une amélioration notable des \gls{vdm} est l'utilisation intelligente des espaces latent. Cette technique à été popularisé par \cite{rombach_high-resolution_2022}
Les modèles auto-régressifs sont des méthodes de génération de séquences qui utilisent les éléments précédents pour prédire chaque élément suivant. Ces modèles ont été largement utilisés dans le domaine du traitement du langage naturel, où ils ont montré d'excellentes performances. Cependant, l'application de ces modèles à la génération de graphes présente des défis particuliers en raison de la structure complexe des graphes. En effet, les graphes sont des structures de données non linéaires et non séquentielles, ce qui rend difficile l'utilisation des modèles auto-régressifs. Malgré cela, plusieurs approches\cite{nash_polygen_2020,liao_efficient_2020} ont été proposées pour adapter ces modèles à la génération de graphes. Cependant, il est important de noter que ces modèles deviennent de moins en moins précis de manière exponentielle à mesure que la taille de la séquence à générer augmente. De ce fait nous n'avons pas encore utilisé ces modèles dans nos travaux.
Les \gls{nerf} représentent une autre famille de modèles génératifs qui ont gagné en popularité récemment. Ces modèles ont la capacité de générer des rendus 3D hautement réalistes à partir de données d'entraînement en utilisant des réseaux de neurones. Contrairement aux approches traditionnelles de rendu 3D basées sur des maillages, les \gls{nerf} exploitent des représentations continues des scènes en décrivant les propriétés radiométriques et géométriques en chaque point de l'espace 3D.
Le principe des \gls{nerf} est de modéliser une fonction de densité de rayon (ou "ray density function") qui caractérise l'interaction de la lumière avec les objets de la scène. Cette fonction est ensuite utilisée pour estimer la couleur et la profondeur des rayons traversant la scène, permettant ainsi de générer des images photoréalistes.
L'un des aspects fascinants des \gls{nerf} réside dans leur capacité à apprendre des scènes complexes et à générer des rendus à partir d'un nombre limité de vues ou de données d'entraînement. Grâce à leur architecture neuronale et à leur capacité à modéliser la distribution des couleurs et des formes, les \gls{nerf} sont en mesure de synthétiser des scènes réalistes même à partir de quelques images.
Les \gls{nerf} sont donc une alternative aux méthodes traditionnelles de reconstructions de scènes par résolution d'un problème inverse. Cependant ces modèles peuvent aussi être utilisé conjointement avec d'autres réseau pour permettre d'obtenir des réseaux génératifs\cite{nichol_point-e_2022,takikawa_neural_2021,nam_3d-ldm_2022}.
Dans notre cas, étant donné que notre ensemble de données ne convient pas à l'application des \gls{nerf}, puisque cela necessiterait un travail lourd de pre-processing (conversion de nos maillages/scènes en image via un moteur de rendu) et de post-precessing (marching cube) de notre dataset. Nous n'utiliserons donc pas cette approche.
Ce chapitre présente un aperçu détaillé du déroulement de mon stage de 6 mois au sein de \gls{ssa}. Tout au long de cette période, j'ai travaillé en tant que Stagiaire Ingénieur en Machine Learning au sein du département Safran Techn, dans l'équipe flex (chercher acronyme bidule), dont le but est de développer des outils de simulation et de modélisation pour les besoins de \gls{ssa}. J'ai été encadré par Xavier Roynard, Michel Alessandro Bucci et Brian Staber.
Je décrirai dans les prochaines sections les différentes étapes de mon stage, les tâches qui m'ont été confiées ainsi que les projets auxquels j'ai contribué.
Les premiers jours de mon stage ont été dédiés à mon intégration au sein de l'entreprise. J'ai rencontré mes tuteurs de stage qui m'ont présenté l'équipe et les différents membres du département. Une visite des locaux de l'entreprise m'a été proposée, accompagnée d'explications sur les mesures de sécurité en vigueur. J'ai également pris connaissance des outils et des logiciels utilisés dans le cadre de mon projet. Ces premiers jours ont été l'occasion pour moi de participer à des réunions d'équipe, en présence d'autres stagiaires et d'ingénieurs, afin de me familiariser avec les différents projets en cours et de préciser les objectifs de mon stage.
Les deux premières semaines de mon stage ont été dédiées à la lecture approfondie de la littérature scientifique liée à mon domaine d'étude. J'ai effectué des recherches bibliographiques afin de recueillir des informations pertinentes sur les avancées récentes, les théories et les techniques utilisées dans le domaine des modèles génératifs. J'ai majoritairement consulté des articles de conférence et des documents en ligne pour obtenir une vue d'ensemble complète des travaux antérieurs réalisés par des chercheurs et des ingénieurs. Pour appronfondir mes recherches, j'ai également utilisé des outils, tels que Semantic Scholar et arxiv, pour trouver les codes sources des papiers ainsi que des papiers ayant pour citation ou référence les articles que j'avais déjà lus, me permettant ainsi de découvrir de nouvelles publications pertinentes.
Lors de ma lecture, j'ai pris des notes sur les concepts clés, les méthodologies et les résultats des études. J'ai analysé et comparé les différentes approches proposées dans la littérature afin de mieux comprendre les avantages et les limites de chaque méthode. Cette phase de lecture m'a permis d'acquérir une solide base de connaissances et de me familiariser avec les travaux existants dans le domaine. Ces connaissances préliminaires ont été essentielles pour orienter mes travaux ultérieurs de développement et de recherche lors du stage.
Au cours de cette période, j'ai également eu des discussions régulières avec mes tuteurs de stage pour discuter des articles lus, clarifier certains points et définir la direction à suivre pour mon projet. Ces échanges m'ont permis d'approfondir ma compréhension et de cibler les aspects spécifiques sur lesquels je devais me concentrer lors des prochaines phases de mon stage.
En parallèle de ma lecture de la littérature, j'ai entamé l'exploration des données fournies par \gls{ssa}. J'ai acquis une compréhension des différents formats de données spécifiques utilisés par l'entreprise pour stocker les résultats des simulations numériques de mécaniques des fluides. De plus, j'ai appris à manipuler ces données en utilisant des outils tels que Paraview\cite{ParaView}.
Le principal ensemble de données sur lequel j'ai travaillé pendant mon stage s'appelle Rotor37\_1200. Il s'agit d'un ensemble de données de simulation \gls{cfd} d'une des 37 pales d'une turbine d'un moteur d'avion. Cet ensemble de données contient 1200 échantillons, qui ont été créé via un processus d'optimisation consistant en l'exploration de paramètres en quête de la maximisation d'un critère de performance.
Chaque aube du jeu de données est une déformation de l'aube nominale. Ainsi tous les maillages possèdent le même nombre de points et la même connectivité. Pour donner un ordre de grandeur, chaque maillage est constitué de 29773 points, 59328 triangles et 89100 arêtes.
Chaque échantillon est constitué de deux fichiers distincts. Le premier est un fichier au format .vtk qui contient le maillage de l'aube, comprenant les positions 3D, les normales et la connectivité de chaque point du maillage. Ce fichier .vtk inclut également les champs physiques associés à chaque point, tels que la température, la pression, etc. Le second fichier est un fichier .csv qui contient des métadonnées globales spécifiques à l'échantillon, telles que les entrées et les sorties de la simulation \gls{cfd}.
\section{Description de l'environnement de travail}
L'équipe de mes tuteurs est basée à Châteaufort, sur le plateau de Saclay, où se trouve le site de l'entreprise. J'ai réussi à trouver un logement dans le nord de Palaiseau, à environ 40 minutes de trajet en bus. En moyenne, le nombre d'employés présents sur le site s'élève à environ mille personnes.
Les locaux de l'entreprise se présentent sous la forme de vastes openspaces, partagés par un maximum d'une dizaine de personnes. Ils sont séparés par de grandes baies vitrées et répartis dans 3 bâtiments sur plusieurs étages. Les bureaux sont spacieux équipés d'au moins un grand écran, d'un clavier et d'une souris. Nous disposons également de salles de réunion, de salles de détente et d'une salle de sport.
Chaque employé dispose d'une station de travail sous la forme d'un ordinateur portable, connecté à un dock sur le bureau. Afin de réaliser des calculs intensifs, nous avons la possibilité de nous connecter au cluster de calcul local, appelé Rosetta, utilisant le système slurm. Ce cluster est composé d'environ 3000 cœurs CPU, 50 GPU et dispose de plusieurs téraoctets de RAM et de stockage disque. Pour le développement de nos projets, nous exploitons la forge interne de Safran, qui est une plateforme GitLab dédiée. En outre, chaque employé a accès à la suite professionnelle Office 365, qui facilite la gestion des documents et des e-mails.
En complément de ma recherche bibliographique, j'ai consacré du temps à tester différentes implémentations des papiers que j'ai pu trouver. Voici la liste des implémentations que j'ai pris le temps d'évaluer, ainsi que mes observations à leur sujet.
\subsection{\gls{vae}}
% parler du fait que pytorch geometric à facilité un peu la tache d'implem
L'une de nos premières initiatives a été de tester des réseaux basés sur les \gls{vae}. Après avoir lu des articles de recherche sur les \gls{vae}, j'ai réalisé plusieurs implémentations sur des images pour me familiariser avec ces concepts. Nous avons ensuite étendu ces expérimentations à des architectures spécifiques aux graphes. Les résultats obtenus étaient encourageants: le réseau était capable de générer des structures, mais la qualité des générations n'était pas exceptionnelle. De plus, nous avons constaté que le réseau était beaucoup trop volumineux par rapport à sa fonctionnalité.
En effet, dans le contexte des graphes, les opérations de "upsampling" n'existent pas de manière directe. Par conséquent, nous avons rencontré des difficultés lors du passage du vecteur latent (représentant une distribution gaussienne) à une représentation sous forme de graphe (noeuds + connectivité) dans le décodeur du \gls{vae}.
Une première solution simple consistait à utiliser une ou plusieurs couches denses pour convertir le vecteur en un couple de matrices décrivant les positions et la connectivité des noeuds. Cependant, cette approche posait problème en raison de la taille des graphes que nous manipulions. En effet, avec des graphes de 30000 nœuds, cela impliquait une matrice de connectivité de taille $30000^2$, ce qui faisait exploser la complexité lorsque nous utilisions des couches denses.
Pour donner un ordre de grandeur, si l'on utilisai un espace latent de taille 8, rien que pour prédire les positions 3D des points dans notre maillage (sans prendre en compte la connectivité), l'utilisation de couches denses impliquait déjà pratiquement 1 million de paramètres ($8\times30000\times3$). Prédire la connectivité était tout simplement impossible, car il aurait fallu une couche dense avec plus de $7$ milliards de paramètres ($8\times30000\times30000$), ce qui dépassait largement les capacités de calcul de nos ressources GPU.
Une seconde solution consitait à utiliser une architecture plus intelligente, telle que Graph U-Net. Cette approche permettait d'éviter l'utilisation de couches denses dans le décodeur grâce aux connexions résiduelles (skip connections). Cependant, ce faisant l'information ne passait pas entièrement par l'espace latent entre le décodeur et l'encodeur. Par conséquent, il était impossible de créer un modèle génératif complet avec cette architecture, puisqu'une partie de l'information pour générer des échantillons était compris dans les skip connections.
Face aux difficultés rencontrées avec les réseaux basés sur les VAE et les limitations de l'architecture Graph U-Net, nous avons pris la décision de mettre de côté ces approches. Et plus largement puisque la connectivité de nos graphes est "locale" (les noeuds sont connectés à leurs voisins proches dans l'espace), nous avons décidé de nous orienter vers des approches basées uniquement sur les positions des noeuds. En effet, la connectivité d'un nuage de points peut facilement être retrouvé via diverses techniques\cite{peng_shape_2021,sulzer_deep_2022}
\subsection{\gls{pvcnn}}
% Pointflow (à l'origine du dataset PointFlow, une modif de shapenet, code à chier)
% pointnet (pointcloud unquement, pas de graphe, code original à chier, mais plein d'implems mieux)
% PVCNN (code à chier, basé sur pointnet)
% SPVCNN (torchsparse, pas réussi à faire marcher pour la diffusion)
% PVD (checkpoint, code à chier, trop chiant les opérations de voxelization devox en cuda + les métriques qui changent entre chaque papiers emd chamfer 1-NNA, en cuda aussi)