feat: prerendre synthetic dataset script

Former-commit-id: f83dd74d82e9ad246a9c1ef01076f40dc1b9b897 [formerly ba0182a3220d1b2b7122227b8ef711c0a2243fc2]
Former-commit-id: 59c17c59f77419b7e420bf95617f54969eabbabc
This commit is contained in:
Laurent Fainsin 2022-07-11 11:58:17 +02:00
parent 8630f1c583
commit edcc3c7bb2

105
src/prerender.ipynb Normal file
View file

@ -0,0 +1,105 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/laurent_fainsin/Documents/unet/.venv/lib/python3.8/site-packages/tqdm/auto.py:22: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
" from .autonotebook import tqdm as notebook_tqdm\n",
"/home/laurent_fainsin/Documents/unet/.venv/lib/python3.8/site-packages/torchvision/io/image.py:13: UserWarning: Failed to load image Python extension: /home/laurent_fainsin/Documents/unet/.venv/lib/python3.8/site-packages/torchvision/image.so: undefined symbol: _ZNK3c1010TensorImpl36is_contiguous_nondefault_policy_implENS_12MemoryFormatE\n",
" warn(f\"Failed to load image Python extension: {e}\")\n"
]
}
],
"source": [
"from PIL import Image\n",
"\n",
"import numpy as np\n",
"import albumentations as A\n",
"\n",
"from utils import RandomPaste\n",
"from data.dataset import SyntheticDataset\n",
"\n",
"from pathlib import Path\n"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"transform = A.Compose(\n",
" [\n",
" A.Resize(512, 512),\n",
" A.Flip(),\n",
" A.ColorJitter(),\n",
" RandomPaste(5, \"/home/lilian/data_disk/lfainsin/spheres/\"),\n",
" A.GaussianBlur(),\n",
" A.ISONoise(),\n",
" ],\n",
")\n",
"\n",
"dataset = SyntheticDataset(image_dir=\"/home/lilian/data_disk/lfainsin/train/\", transform=transform)\n"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"10001\r"
]
}
],
"source": [
"for i, (image, mask) in enumerate(dataset):\n",
" path = f\"/home/lilian/data_disk/lfainsin/prerender/{i}/\"\n",
" Path(path).mkdir(parents=True, exist_ok=True)\n",
" Image.fromarray(image).save(f\"{path}/image.jpg\")\n",
" Image.fromarray(mask*255).save(f\"{path}/MASK.PNG\")\n",
" \n",
" print(i, end=\"\\r\")\n",
"\n",
" if i > 10000:\n",
" break"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3.8.0 ('.venv': poetry)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.0"
},
"orig_nbformat": 4,
"vscode": {
"interpreter": {
"hash": "dc80d2c03865715c8671359a6bf138f6c8ae4e26ae025f2543e0980b8db0ed7e"
}
}
},
"nbformat": 4,
"nbformat_minor": 2
}