23295957e6
Former-commit-id: ec05ecb457cdd8c4ef9185b9ca15d527f23e9492 [formerly 2d60ca19027fcf145e4014884f006b4cdc9ae680] Former-commit-id: 44099b38909857ed940f7d0195875d7e428470ef
3.2 KiB
3.2 KiB
sphereDetect
sphereDetect is a simple neural network, based on a Mask R-CNN, to detect spherical landmarks for image calibration.
Built with
Frameworks
Tools
Getting started (with docker and vscode)
Requirements
Installation
Clone the repository:
git clone git@git.inpt.fr:fainsil/pytorch-reva.git
Start VS Code:
vscode pytorch-reva
Install the Remote Development extension pack.
Reopen the workspace in devcontainer mode.
Usage
Configure Weights & Biases (local) server at http://localhost:8080, and login:
wandb login --host http://localhost:8080
Press F5
to launch src/train.py
in debug mode (with breakpoints, slower)
or press Ctrl+F5
to launch src/train.py
in release mode.
Getting started (without docker)
Requirements
Installation
Clone the repository:
git clone git@git.inpt.fr:fainsil/pytorch-reva.git
cd pytorch-reva
Install the dependencies:
poetry install --with all
Usage
Activate python environment:
poetry shell
Configure Weights & Biases (local) server, and login:
wandb server start
wandb login --host http://localhost:8080
Start a training:
python src/train.py
License
Distributed under the MIT license.
See LICENSE
for more information.
Contact
Laurent Fainsin [loʁɑ̃ fɛ̃zɛ̃]
<laurent@fainsin.bzh>