142 lines
4.4 KiB
Python
142 lines
4.4 KiB
Python
|
import numpy as np
|
||
|
|
||
|
|
||
|
def fast_voxel_intersect(start, end, origin, step) -> tuple[list, list]:
|
||
|
"""Compute the voxels intersected by a line segment.
|
||
|
|
||
|
Args:
|
||
|
start (array-like): start point of line segment
|
||
|
end (array-like): end point of line segment
|
||
|
origin (array-like): origin of voxel grid
|
||
|
step (array-like): step size of voxel grid
|
||
|
|
||
|
Returns:
|
||
|
list: list of intersection points
|
||
|
list: list of intersected voxels
|
||
|
"""
|
||
|
|
||
|
# Convert to numpy arrays
|
||
|
start = np.asarray(start)
|
||
|
end = np.asarray(end)
|
||
|
origin = np.asarray(origin)
|
||
|
step = np.asarray(step)
|
||
|
|
||
|
# Translate line segment to voxel grid
|
||
|
start = start - origin
|
||
|
end = end - origin
|
||
|
|
||
|
# Initialize list of intersected voxels
|
||
|
intersections = []
|
||
|
voxels = []
|
||
|
|
||
|
# Compute direction of line segment
|
||
|
direction = end - start
|
||
|
global_distance = np.linalg.norm(direction, axis=0)
|
||
|
if global_distance == 0:
|
||
|
return intersections
|
||
|
direction = direction / global_distance
|
||
|
|
||
|
# Compute the sign of the direction
|
||
|
direction_signs = np.sign(direction)
|
||
|
is_positive = direction_signs > 0
|
||
|
is_negative = direction_signs < 0
|
||
|
|
||
|
# Initialize current position to start
|
||
|
position = start.copy()
|
||
|
|
||
|
# Main loop
|
||
|
while True:
|
||
|
# Compute the distance to the next boundaries
|
||
|
next_boundaries = np.divide(position + step * direction_signs, step)
|
||
|
distances = (is_positive * np.floor(next_boundaries) +
|
||
|
is_negative * np.ceil(next_boundaries)) * step - position
|
||
|
|
||
|
# Determine the nearest boundary to be reached
|
||
|
boundary_distances = np.abs(distances / direction)
|
||
|
clothest_boundary = np.argmin(boundary_distances)
|
||
|
clothest_boundary_distance = boundary_distances[clothest_boundary]
|
||
|
|
||
|
# Check if we are done
|
||
|
distance_to_end = abs((end[0] - position[0]) / direction[0])
|
||
|
if clothest_boundary_distance > distance_to_end:
|
||
|
break
|
||
|
|
||
|
# Update position
|
||
|
position = position + clothest_boundary_distance * direction
|
||
|
|
||
|
# Correct position to be on boundary
|
||
|
position[clothest_boundary] = round(
|
||
|
position[clothest_boundary] / step[clothest_boundary]) * step[clothest_boundary]
|
||
|
|
||
|
# Get corresponding voxel
|
||
|
boundary_reached_negativly = np.zeros(start.shape, dtype=bool)
|
||
|
boundary_reached_negativly[clothest_boundary] = is_negative[clothest_boundary]
|
||
|
voxel = np.floor(position) - boundary_reached_negativly * step
|
||
|
|
||
|
# Add voxel to list
|
||
|
intersections.append(position + origin)
|
||
|
voxels.append(voxel + origin)
|
||
|
|
||
|
return intersections, voxels
|
||
|
|
||
|
|
||
|
if __name__ == '__main__':
|
||
|
import matplotlib.pyplot as plt
|
||
|
|
||
|
def update_figure():
|
||
|
positions, voxels = fast_voxel_intersect(start, end, origin, step)
|
||
|
|
||
|
plt.clf()
|
||
|
|
||
|
# Plot hitted voxels
|
||
|
for voxel in voxels:
|
||
|
plt.fill([voxel[0], voxel[0] + step[0], voxel[0] + step[0], voxel[0]],
|
||
|
[voxel[1], voxel[1], voxel[1] + step[1], voxel[1] + step[1]],
|
||
|
color='#e25', alpha=0.5)
|
||
|
|
||
|
# Plot line segment
|
||
|
plt.plot([start[0], end[0]], [start[1], end[1]], 'k-')
|
||
|
plt.plot(start[0], start[1], 'go')
|
||
|
plt.plot(end[0], end[1], 'ro')
|
||
|
|
||
|
# Plot intersection points
|
||
|
for pos in positions:
|
||
|
plt.plot(pos[0], pos[1], 'bo')
|
||
|
|
||
|
# Plot voxel grid
|
||
|
plt.axis('equal')
|
||
|
plt.xlim((-10, 10))
|
||
|
plt.ylim((-10, 10))
|
||
|
xmin, xmax = plt.xlim()
|
||
|
ymin, ymax = plt.ylim()
|
||
|
plt.xticks(np.arange(xmin + origin[0],
|
||
|
xmax + origin[0] + step[0], step[0]))
|
||
|
plt.yticks(np.arange(ymin + origin[1],
|
||
|
ymax + origin[1] + step[1], step[1]))
|
||
|
plt.grid()
|
||
|
plt.draw()
|
||
|
|
||
|
def onclick(event):
|
||
|
global start, end
|
||
|
# if event.button == 1:
|
||
|
# start = np.array([event.xdata, event.ydata])
|
||
|
# elif event.button == 3:
|
||
|
# end = np.array([event.xdata, event.ydata])
|
||
|
start = np.random.rand(2) * 10 - 5
|
||
|
end = np.random.rand(2) * 10 - 5
|
||
|
update_figure()
|
||
|
|
||
|
# Define voxel grid
|
||
|
origin = np.array([.1, -.3])
|
||
|
step = np.array([1.0, 1.0])
|
||
|
|
||
|
# Define segment
|
||
|
start = np.random.rand(2) * 10 - 5
|
||
|
end = np.random.rand(2) * 10 - 5
|
||
|
|
||
|
# Plot
|
||
|
fig = plt.figure()
|
||
|
fig.canvas.mpl_connect('button_press_event', onclick)
|
||
|
update_figure()
|
||
|
plt.show()
|