AAAHAAAHAHHAHAHAHAHAHHAHAHAH

Co-authored-by: Damien Guillotin <damguillotin@gmail.com>
Co-authored-by: pejour <pejour@users.noreply.github.com>
This commit is contained in:
Laureηt 2023-01-30 15:10:45 +01:00
parent f3292494bb
commit 69ea7232dc
Signed by: Laurent
SSH key fingerprint: SHA256:kZEpW8cMJ54PDeCvOhzreNr4FSh6R13CMGH/POoO8DI
2 changed files with 60 additions and 13 deletions

View file

@ -53,7 +53,7 @@ $\mathcal{V}_t = \{ \textbf{Q} \in \mathbb{R}^3, u(\textbf{Q}) = t \}, \quad t\i
<img src="figs/lvl7_2D.png" class="m-auto h-110"/> <img src="figs/lvl7_2D.png" class="m-auto h-110"/>
<span class="absolute bottom-0 font-extralight mb-1 mr-2 right-0 text-xs">Variational principles, surface evolution, PDEs, level set methods, and the stereo problem - Olivier Faugeras, Renaud Keriven, 1998</span> <a href="https://hal.inria.fr/inria-00073673/document" class="absolute bottom-0 font-extralight mb-1 mr-2 right-0 text-xs">Variational principles, surface evolution, PDEs, level set methods, and the stereo problem - Olivier Faugeras, Renaud Keriven, 1998</a>
--- ---
@ -67,18 +67,34 @@ $\mathcal{V}_t = \{ \textbf{Q} \in \mathbb{R}^3, u(\textbf{Q}) = t \}, \quad t\i
## Mise à jour du volume ## Mise à jour du volume
consensus blabla - Sélection des voxels sur la bordure du "marbre"
- Vérification de la visibilité du voxel par toutes les caméras
- Récupération des couleurs / niveaux de gris visibles par les caméras
- Consensus sur la couleur / niveau de gris du voxel étudié
- Remplissage si consensus, creusage sinon
--- ---
## Initialisation du volume ## Initialisation du volume
ones ou alors shape from silouhette - Définition d'une taille limite:
- $x \in [-1, 1]$
- $y \in [-1, 1]$
- $z \in [-1, 1]$
- Définition d'une résolution (un pas): $5.10^{-2}$
- Initialisation des valeurs du marbre:
- Uniforme (`np.zeros` ou `np.ones`)
- Shape From Silouhette (BE4)
--- ---
## Exemple Shape from Silouhette ## Exemple Shape from Silouhette
<img src="https://www.researchgate.net/profile/Silvio-Savarese/publication/221625880/figure/fig1/AS:652956261158913@1532688312594/Shape-from-Silhouettes-The-silhouette-and-camera-location-for-each-view-forms-a-cone.png" class="m-auto mt-2 h-110">
<a href="https://ieeexplore.ieee.org/document/1024034" class="absolute bottom-0 font-extralight mb-1 mr-2 right-0 text-xs">Implementation of a Shadow Carving System for Shape Capture, doi: 10.1109/TDPVT.2002.1024034</a>
--- ---
## Raytracing ## Raytracing

View file

@ -19,7 +19,11 @@ Z *= np.random.rand(*Z.shape)
for i, x in enumerate(x_vals): for i, x in enumerate(x_vals):
for j, y in enumerate(y_vals): for j, y in enumerate(y_vals):
color = f"#{hex(int(Z[j, i] * 255))[2:]}{hex(int(Z[j, i] * 255))[2:]}{hex(int(Z[j, i] * 255))[2:]}" color = f"{hex(int(Z[j, i] * 255))[2:]}"
if color == "0":
color = "#f00"
else:
color = "#" + 3 * color
plt.fill([x, x + 0.1, x + 0.1, x], [y, y, y + 0.1, y + 0.1], color=color) plt.fill([x, x + 0.1, x + 0.1, x], [y, y, y + 0.1, y + 0.1], color=color)
@ -44,16 +48,43 @@ for i in range(nb_cams):
plt.plot(x[0, :], x[1, :], "r-") plt.plot(x[0, :], x[1, :], "r-")
# draw 1d image of the scene for each camera
for i in range(nb_cams):
# sort pixels by distance to camera
cam_pose = cam_poses[i]
pixels_dist = np.linalg.norm(np.array([X.flatten(), Y.flatten()]).T - cam_pose, axis=1)
X_ = X.flatten()[np.argsort(pixels_dist)]
Y_ = Y.flatten()[np.argsort(pixels_dist)]
plt.xlim(-7, 7) plt.xlim(-7, 7)
plt.ylim(-7, 7) plt.ylim(-7, 7)
plt.axis("equal") plt.axis("equal")
# draw 1d image of the scene for each camera
for i in range(2):
plt.figure()
# sort pixels by distance to camera
cam_pose = cam_poses[i]
pixels_dist = np.linalg.norm(np.array([X.flatten(), Y.flatten()]).T - cam_pose, axis=1)
pixels_sort = np.argsort(pixels_dist)[::-1]
px = np.array([[-5, -5, 1], [5, -5, 1], [5, 5, 1], [-5, 5, 1]]).T
px = np.linalg.inv(cam2world_projs[i]) @ px
px /= px[1, :]
x0 = px[1, :].min()
x1 = px[1, :].max()
plt.fill([x0, x1, x1, x0], [0, 0, 1, 1], color="r")
for j in pixels_sort:
x, y = X.flatten()[j], Y.flatten()[j]
color = f"{hex(int(Z.flatten()[j] * 255))[2:]}"
if color == "0":
continue
color = "#" + 3 * color
px = np.array([[x, y, 1], [x + 0.1, y, 1], [x + 0.1, y + 0.1, 1], [x, y + 0.1, 1]]).T
px = np.linalg.inv(cam2world_projs[i]) @ px
px /= px[1, :]
x0 = px[1, :].min()
x1 = px[1, :].max()
plt.fill([x0, x1, x1, x0], [0, 0, 1, 1], color=color)
plt.axis("equal")
plt.show() plt.show()