projet-probleme-inverse-3D/fvi.py
2023-01-11 16:26:06 +01:00

152 lines
5 KiB
Python

import numpy as np
def fast_voxel_intersect(start, end, origin, step, shape) -> tuple[list, list, list]:
"""Compute the voxels intersected by a line segment.
Args:
start (array-like): start point of line segment
end (array-like): end point of line segment
origin (array-like): origin of voxel grid
step (array-like): step size of voxel grid
Returns:
list: list of intersection points
list: list of intersected voxels
list: list of voxels idx
"""
# Convert to numpy arrays
start = np.asarray(start)
end = np.asarray(end)
origin = np.asarray(origin)
step = np.asarray(step)
# Translate line segment to voxel grid
start = start - origin
end = end - origin
# Initialize list of intersected voxels
intersections = []
voxels = []
voxels_idx = []
# Compute direction of line segment
direction = end - start
global_distance = np.linalg.norm(direction, axis=0)
if global_distance == 0:
return intersections, voxels, voxels_idx
direction = direction / global_distance
non_zero_direction = (direction != 0).argmax()
# Compute the sign of the direction
direction_signs = np.sign(direction)
is_negative = direction_signs < 0
# Initialize current position to start
position = start.copy()
# Main loop
while True:
# Compute the distance to the next boundaries
next_boundaries = np.divide(position + step * direction_signs, step)
distances = ((1 - is_negative) * np.floor(next_boundaries) +
is_negative * np.ceil(next_boundaries)) * step - position
# Determine the nearest boundary to be reached
boundary_distances = np.abs(distances / direction)
clothest_boundary = np.argmin(boundary_distances)
clothest_boundary_distance = boundary_distances[clothest_boundary]
# Check if we are done
distance_to_end = abs((end[non_zero_direction] - position[non_zero_direction]) / direction[non_zero_direction])
if clothest_boundary_distance > distance_to_end:
break
# Update position
position = position + clothest_boundary_distance * direction
# Correct position to be on boundary
position[clothest_boundary] = round(
position[clothest_boundary] / step[clothest_boundary]) * step[clothest_boundary]
# Get corresponding voxel
on_boundary = np.mod(position, step) == 0
voxel = np.floor(position) - is_negative * on_boundary * step
# Add voxel to list
idx = np.floor_divide(voxel, step).astype(int)
if np.any(idx < 0) or np.any(idx >= shape):
continue
intersections.append(position + origin)
voxels.append(voxel + origin)
voxels_idx.append(idx)
return intersections, voxels, voxels_idx
if __name__ == '__main__':
import matplotlib.pyplot as plt
def update_figure():
positions, voxels, voxels_idx = fast_voxel_intersect(start, end, origin, step, shape)
plt.clf()
# Plot hitted voxels
for voxel in voxels:
plt.fill([voxel[0], voxel[0] + step[0], voxel[0] + step[0], voxel[0]],
[voxel[1], voxel[1], voxel[1] + step[1], voxel[1] + step[1]],
color='#e25', alpha=0.5)
for voxel_id in voxels_idx:
plt.fill([
origin[0] + voxel_id[0] * step[0], origin[0] + (voxel_id[0] + 1) * step[0],
origin[0] + (voxel_id[0] + 1) * step[0], origin[0] + voxel_id[0] * step[0]
], [
origin[1] + voxel_id[1] * step[1], origin[1] + voxel_id[1] * step[1],
origin[1] + (voxel_id[1] + 1) * step[1], origin[1] + (voxel_id[1] + 1) * step[1]
], color='#2e3', alpha=0.5)
# Plot line segment
plt.plot([start[0], end[0]], [start[1], end[1]], 'k-')
plt.plot(start[0], start[1], 'go')
plt.plot(end[0], end[1], 'ro')
# Plot intersection points
for pos in positions:
plt.plot(pos[0], pos[1], 'bo')
# Plot voxel grid
plt.axis('equal')
plt.xlim((-10, 10))
plt.ylim((-10, 10))
plt.xticks(origin[0] + step[0] * np.arange(shape[0] + 1))
plt.yticks(origin[1] + step[1] * np.arange(shape[1] + 1))
plt.grid()
plt.draw()
def onkey(event):
global start, end
if event.key == ' ':
start = np.random.rand(2) * 20 - 10
end = np.random.rand(2) * 20 - 10
update_figure()
# Define voxel grid
origin = np.array([-5., -5.])
step = np.array([1.0, 1.0])
shape = (10, 10)
# Define segment
# start = np.random.rand(2) * 20 - 10
# end = np.random.rand(2) * 20 - 10
start = np.array([0., 0.])
end = np.array([4., -4.])
# Plot
fig = plt.figure()
fig.canvas.mpl_connect('key_press_event', onkey)
update_figure()
plt.show()