mirror of
https://github.com/finegrain-ai/refiners.git
synced 2024-11-10 07:21:59 +00:00
43 lines
1.3 KiB
Python
43 lines
1.3 KiB
Python
|
from dataclasses import dataclass
|
||
|
|
||
|
from torchvision.transforms.functional import gaussian_blur as torch_gaussian_blur # type: ignore
|
||
|
import pytest
|
||
|
import torch
|
||
|
|
||
|
from refiners.fluxion.utils import gaussian_blur, manual_seed
|
||
|
|
||
|
|
||
|
@dataclass
|
||
|
class BlurInput:
|
||
|
kernel_size: int | tuple[int, int]
|
||
|
sigma: float | tuple[float, float] | None = None
|
||
|
image_height: int = 512
|
||
|
image_width: int = 512
|
||
|
batch_size: int | None = 1
|
||
|
|
||
|
|
||
|
BLUR_INPUTS: list[BlurInput] = [
|
||
|
BlurInput(kernel_size=9),
|
||
|
BlurInput(kernel_size=9, batch_size=None),
|
||
|
BlurInput(kernel_size=9, sigma=1.0),
|
||
|
BlurInput(kernel_size=9, sigma=1.0, image_height=768),
|
||
|
BlurInput(kernel_size=(9, 5), sigma=(1.0, 0.8)),
|
||
|
]
|
||
|
|
||
|
|
||
|
@pytest.fixture(params=BLUR_INPUTS)
|
||
|
def blur_input(request: pytest.FixtureRequest) -> BlurInput:
|
||
|
return request.param
|
||
|
|
||
|
|
||
|
def test_gaussian_blur(blur_input: BlurInput) -> None:
|
||
|
manual_seed(2)
|
||
|
tensor = torch.randn(3, blur_input.image_height, blur_input.image_width)
|
||
|
if blur_input.batch_size is not None:
|
||
|
tensor = tensor.expand(blur_input.batch_size, -1, -1, -1)
|
||
|
|
||
|
ref_blur = torch_gaussian_blur(tensor, blur_input.kernel_size, blur_input.sigma) # type: ignore
|
||
|
our_blur = gaussian_blur(tensor, blur_input.kernel_size, blur_input.sigma)
|
||
|
|
||
|
assert torch.equal(our_blur, ref_blur)
|