mirror of
https://github.com/finegrain-ai/refiners.git
synced 2024-11-15 01:28:14 +00:00
795 lines
29 KiB
Markdown
795 lines
29 KiB
Markdown
---
|
|
icon: material/castle
|
|
---
|
|
|
|
# Adapting Stable Diffusion XL
|
|
|
|
Stable Diffusion XL (SDXL) is a very popular text-to-image open source foundation model.
|
|
This guide will show you how to boost its capabilities with Refiners, using iconic adapters the framework supports out-of-the-box (i.e. without the need for tedious prompt engineering).
|
|
We'll follow a step by step approach, progressively increasing the number of adapters involved to showcase how simple adapter composition is using Refiners.
|
|
Our use case will be the generation of an image with "a futuristic castle surrounded by a forest, mountains in the background".
|
|
|
|
## Baseline
|
|
|
|
Make sure that Refiners is installed in your local environment (see [Getting started](/getting-started/recommended/)),
|
|
and that you have access to a decent GPU (~24 GB VRAM should be enough).
|
|
|
|
Before diving into the adapters themselves, let's establish a baseline by simply prompting SDXL with Refiners.
|
|
|
|
!!! note "Reminder"
|
|
A StableDiffusion model is composed of three modules:
|
|
|
|
- An Autoencoder, responsible for embedding images into a latent space
|
|
- A UNet, responsible for the diffusion process
|
|
- A Text Encoder, responsible for encoding the user prompt which will guide the diffusion process.
|
|
|
|
Start by instantiating a [`StableDiffusion_XL`][refiners.foundationals.latent_diffusion.stable_diffusion_xl.StableDiffusion_XL] model and load the weights.
|
|
|
|
```py
|
|
import torch
|
|
from huggingface_hub import hf_hub_download
|
|
|
|
from refiners.foundationals.latent_diffusion.stable_diffusion_xl import StableDiffusion_XL
|
|
|
|
# instantiate SDXL model
|
|
sdxl = StableDiffusion_XL(
|
|
device="cuda", # use GPU
|
|
dtype=torch.float16 # use half-precision for memory efficiency
|
|
)
|
|
|
|
# Load the weights
|
|
sdxl.clip_text_encoder.load_from_safetensors(
|
|
hf_hub_download(
|
|
repo_id="refiners/sdxl.text_encoder",
|
|
filename="model.safetensors",
|
|
)
|
|
)
|
|
sdxl.unet.load_from_safetensors(
|
|
hf_hub_download(
|
|
repo_id="refiners/sdxl.unet",
|
|
filename="model.safetensors",
|
|
)
|
|
)
|
|
sdxl.lda.load_from_safetensors(
|
|
hf_hub_download(
|
|
repo_id="refiners/sdxl.autoencoder_fp16fix",
|
|
filename="model.safetensors",
|
|
)
|
|
)
|
|
```
|
|
|
|
Then, define the inference parameters by setting the appropriate prompt, seed and number of inference steps:
|
|
|
|
```py
|
|
# hyperparameters
|
|
seed = 42
|
|
num_inference_steps = 50
|
|
prompt = "a futuristic castle surrounded by a forest, mountains in the background"
|
|
sdxl.set_inference_steps(num_inference_steps, first_step=0)
|
|
|
|
# enable self-attention guidance to enhance the quality of the generated images
|
|
sag_scale = 0.75
|
|
sdxl.set_self_attention_guidance(enable=True, scale=sag_scale)
|
|
```
|
|
|
|
Finally, define and run the inference process:
|
|
|
|
```py
|
|
from refiners.fluxion.utils import manual_seed, no_grad
|
|
from tqdm import tqdm
|
|
|
|
with no_grad(): # disable gradient calculation for memory-efficient inference
|
|
# encode the text prompts to embeddings, and get the time_ids
|
|
clip_text_embedding, pooled_text_embedding = sdxl.compute_clip_text_embedding(
|
|
text=prompt + ", best quality, high quality",
|
|
negative_text="monochrome, lowres, bad anatomy, worst quality, low quality",
|
|
)
|
|
time_ids = sdxl.default_time_ids
|
|
|
|
# seed the random number generator, for reproducibility
|
|
manual_seed(seed)
|
|
|
|
# SDXL typically generates 1024x1024, here we use a higher resolution
|
|
x = sdxl.init_latents((2048, 2048))
|
|
|
|
# diffusion denoising process
|
|
for step in tqdm(sdxl.steps):
|
|
x = sdxl(
|
|
x,
|
|
step=step,
|
|
clip_text_embedding=clip_text_embedding,
|
|
pooled_text_embedding=pooled_text_embedding,
|
|
time_ids=time_ids,
|
|
)
|
|
predicted_image = sdxl.lda.latents_to_image(x)
|
|
|
|
predicted_image.save("vanilla_sdxl.png")
|
|
```
|
|
|
|
??? example "Expand to see the entire end-to-end code"
|
|
|
|
```py
|
|
import torch
|
|
from huggingface_hub import hf_hub_download
|
|
from tqdm import tqdm
|
|
|
|
from refiners.fluxion.utils import manual_seed, no_grad
|
|
from refiners.foundationals.latent_diffusion.stable_diffusion_xl import StableDiffusion_XL
|
|
|
|
# instantiate SDXL model
|
|
sdxl = StableDiffusion_XL(
|
|
device="cuda", # use GPU
|
|
dtype=torch.float16 # use half-precision for memory efficiency
|
|
)
|
|
|
|
# Load the weights
|
|
sdxl.clip_text_encoder.load_from_safetensors(
|
|
hf_hub_download(
|
|
repo_id="refiners/sdxl.text_encoder",
|
|
filename="model.safetensors",
|
|
)
|
|
)
|
|
sdxl.unet.load_from_safetensors(
|
|
hf_hub_download(
|
|
repo_id="refiners/sdxl.unet",
|
|
filename="model.safetensors",
|
|
)
|
|
)
|
|
sdxl.lda.load_from_safetensors(
|
|
hf_hub_download(
|
|
repo_id="refiners/sdxl.autoencoder_fp16fix",
|
|
filename="model.safetensors",
|
|
)
|
|
)
|
|
|
|
# hyperparameters
|
|
seed = 42
|
|
num_inference_steps = 50
|
|
prompt = "a futuristic castle surrounded by a forest, mountains in the background"
|
|
sdxl.set_inference_steps(num_inference_steps, first_step=0)
|
|
|
|
# enable self-attention guidance to enhance the quality of the generated images
|
|
sag_scale = 0.75
|
|
sdxl.set_self_attention_guidance(enable=True, scale=sag_scale)
|
|
|
|
with no_grad(): # disable gradient calculation for memory-efficient inference
|
|
# encode the text prompts to embeddings, and get the time_ids
|
|
clip_text_embedding, pooled_text_embedding = sdxl.compute_clip_text_embedding(
|
|
text=prompt + ", best quality, high quality",
|
|
negative_text="monochrome, lowres, bad anatomy, worst quality, low quality",
|
|
)
|
|
time_ids = sdxl.default_time_ids
|
|
|
|
# seed the random number generator, for reproducibility
|
|
manual_seed(seed)
|
|
|
|
# SDXL typically generates 1024x1024, here we use a higher resolution
|
|
x = sdxl.init_latents((2048, 2048))
|
|
|
|
# diffusion denoising process
|
|
for step in tqdm(sdxl.steps):
|
|
x = sdxl(
|
|
x,
|
|
step=step,
|
|
clip_text_embedding=clip_text_embedding,
|
|
pooled_text_embedding=pooled_text_embedding,
|
|
time_ids=time_ids,
|
|
)
|
|
predicted_image = sdxl.lda.latents_to_image(x)
|
|
|
|
predicted_image.save("vanilla_sdxl.png")
|
|
```
|
|
|
|
The resulting image should look like this:
|
|
|
|
<figure markdown>
|
|
<img src="vanilla_sdxl.webp" alt="Generated image of a castle using default SDXL weights" width="400">
|
|
<figcaption>Generated image of a castle using default SDXL weights.</figcaption>
|
|
</figure>
|
|
|
|
It is not really what we prompted the model for, unfortunately.
|
|
To get a more futuristic-looking castle, you can either go for tedious prompt engineering, or use a pretrainered LoRA tailored to our use case,
|
|
like the [Sci-fi Environments](https://civitai.com/models/105945?modelVersionId=140624) LoRA available on Civitai.
|
|
We'll now show you how the LoRA option works with Refiners.
|
|
|
|
## Single LoRA
|
|
|
|
Let's use the [Sci-fi Environments](https://civitai.com/models/105945?modelVersionId=140624) LoRA.
|
|
LoRas don't need to be converted, all you have to do is download the safetensors file from the internet.
|
|
|
|
You can easily download the LoRA by doing:
|
|
```bash
|
|
curl -L -o scifi.safetensors 'https://civitai.com/api/download/models/140624?type=Model&format=SafeTensor'
|
|
```
|
|
|
|
Inject the LoRA into SDXL using [`SDLoraManager`][refiners.foundationals.latent_diffusion.lora.SDLoraManager] right after instantiating `StableDiffusion_XL`:
|
|
|
|
|
|
```py
|
|
from refiners.fluxion.utils import load_from_safetensors
|
|
from refiners.foundationals.latent_diffusion.lora import SDLoraManager
|
|
|
|
# Load LoRA weights from disk and inject them into target
|
|
manager = SDLoraManager(sdxl)
|
|
scifi_lora_weights = load_from_safetensors("scifi.safetensors")
|
|
manager.add_loras("scifi", tensors=scifi_lora_weights)
|
|
```
|
|
|
|
??? example "Expand to see the entire end-to-end code"
|
|
|
|
```py
|
|
import torch
|
|
from huggingface_hub import hf_hub_download
|
|
from tqdm import tqdm
|
|
|
|
from refiners.fluxion.utils import load_from_safetensors, manual_seed, no_grad
|
|
from refiners.foundationals.latent_diffusion.lora import SDLoraManager
|
|
from refiners.foundationals.latent_diffusion.stable_diffusion_xl import StableDiffusion_XL
|
|
|
|
# instantiate SDXL model
|
|
sdxl = StableDiffusion_XL(
|
|
device="cuda", # use GPU
|
|
dtype=torch.float16 # use half-precision for memory efficiency
|
|
)
|
|
|
|
# Load the weights
|
|
sdxl.clip_text_encoder.load_from_safetensors(
|
|
hf_hub_download(
|
|
repo_id="refiners/sdxl.text_encoder",
|
|
filename="model.safetensors",
|
|
)
|
|
)
|
|
sdxl.unet.load_from_safetensors(
|
|
hf_hub_download(
|
|
repo_id="refiners/sdxl.unet",
|
|
filename="model.safetensors",
|
|
)
|
|
)
|
|
sdxl.lda.load_from_safetensors(
|
|
hf_hub_download(
|
|
repo_id="refiners/sdxl.autoencoder_fp16fix",
|
|
filename="model.safetensors",
|
|
)
|
|
)
|
|
|
|
# add Sci-Fi LoRA
|
|
manager = SDLoraManager(sdxl)
|
|
scifi_lora_weights = load_from_safetensors("scifi.safetensors")
|
|
manager.add_loras("scifi", tensors=scifi_lora_weights)
|
|
|
|
# hyperparameters
|
|
seed = 42
|
|
num_inference_steps = 50
|
|
prompt = "a futuristic castle surrounded by a forest, mountains in the background"
|
|
sdxl.set_inference_steps(num_inference_steps, first_step=0)
|
|
|
|
# enable self-attention guidance to enhance the quality of the generated images
|
|
sag_scale = 0.75
|
|
sdxl.set_self_attention_guidance(enable=True, scale=sag_scale)
|
|
|
|
with no_grad(): # disable gradient calculation for memory-efficient inference
|
|
# encode the text prompts to embeddings, and get the time_ids
|
|
clip_text_embedding, pooled_text_embedding = sdxl.compute_clip_text_embedding(
|
|
text=prompt + ", best quality, high quality",
|
|
negative_text="monochrome, lowres, bad anatomy, worst quality, low quality",
|
|
)
|
|
time_ids = sdxl.default_time_ids
|
|
|
|
# seed the random number generator, for reproducibility
|
|
manual_seed(seed)
|
|
|
|
# SDXL typically generates 1024x1024, here we use a higher resolution
|
|
x = sdxl.init_latents((2048, 2048))
|
|
|
|
# diffusion denoising process
|
|
for step in tqdm(sdxl.steps):
|
|
x = sdxl(
|
|
x,
|
|
step=step,
|
|
clip_text_embedding=clip_text_embedding,
|
|
pooled_text_embedding=pooled_text_embedding,
|
|
time_ids=time_ids,
|
|
)
|
|
|
|
# decode the latents to an image
|
|
predicted_image = sdxl.lda.decode_latents(x)
|
|
|
|
predicted_image.save("scifi_sdxl.png")
|
|
```
|
|
|
|
You should get something like this - pretty neat, isn't it?
|
|
|
|
<figure markdown>
|
|
<img src="scifi_sdxl.webp" alt="Sci-fi castle" width="400">
|
|
<figcaption>Generated image of a castle in sci-fi style.</figcaption>
|
|
</figure>
|
|
|
|
## Multiple LoRAs
|
|
|
|
Continuing with our futuristic castle example, we might want to turn it, for instance, into a pixel art.
|
|
|
|
Again, we could either try some tedious prompt engineering,
|
|
or instead use another LoRA found on the web, such as [Pixel Art LoRA](https://civitai.com/models/120096/pixel-art-xl?modelVersionId=135931), found on Civitai.
|
|
|
|
You can easily download the LoRA by doing:
|
|
```bash
|
|
curl -L -o pixelart.safetensors 'https://civitai.com/api/download/models/135931?type=Model&format=SafeTensor'
|
|
```
|
|
|
|
Injecting a second LoRA into the current SDXL model is dead simple, as [`SDLoraManager`][refiners.foundationals.latent_diffusion.lora.SDLoraManager] allows loading multiple LoRAs:
|
|
|
|
```py
|
|
# load LoRAs weights from disk and inject them into target
|
|
manager = SDLoraManager(sdxl)
|
|
manager.add_loras("scifi-lora", load_from_safetensors("scifi.safetensors"))
|
|
manager.add_loras("pixel-art-lora", load_from_safetensors("pixelart.safetensors"))
|
|
```
|
|
|
|
Adapters such as LoRAs also have a [scale][refiners.fluxion.adapters.Lora.scale] (roughly) quantifying the effect of this Adapter.
|
|
Refiners allows setting different scales for each Adapter, allowing the user to balance the effect of each Adapter:
|
|
|
|
```py
|
|
# load LoRAs weights from disk and inject them into target
|
|
manager = SDLoraManager(sdxl)
|
|
manager.add_loras("scifi-lora", load_from_safetensors("scifi.safetensors"), scale=1.0)
|
|
manager.add_loras("pixel-art-lora", load_from_safetensors("pixelart.safetensors"), scale=1.4)
|
|
```
|
|
|
|
??? example "Expand to see the entire end-to-end code"
|
|
|
|
```py
|
|
import torch
|
|
from huggingface_hub import hf_hub_download
|
|
from tqdm import tqdm
|
|
|
|
from refiners.fluxion.utils import load_from_safetensors, manual_seed, no_grad
|
|
from refiners.foundationals.latent_diffusion.lora import SDLoraManager
|
|
from refiners.foundationals.latent_diffusion.stable_diffusion_xl import StableDiffusion_XL
|
|
|
|
# instantiate SDXL model
|
|
sdxl = StableDiffusion_XL(
|
|
device="cuda", # use GPU
|
|
dtype=torch.float16 # use half-precision for memory efficiency
|
|
)
|
|
|
|
# Load the weights
|
|
sdxl.clip_text_encoder.load_from_safetensors(
|
|
hf_hub_download(
|
|
repo_id="refiners/sdxl.text_encoder",
|
|
filename="model.safetensors",
|
|
)
|
|
)
|
|
sdxl.unet.load_from_safetensors(
|
|
hf_hub_download(
|
|
repo_id="refiners/sdxl.unet",
|
|
filename="model.safetensors",
|
|
)
|
|
)
|
|
sdxl.lda.load_from_safetensors(
|
|
hf_hub_download(
|
|
repo_id="refiners/sdxl.autoencoder_fp16fix",
|
|
filename="model.safetensors",
|
|
)
|
|
)
|
|
|
|
# add Sci-Fi and Pixel-Art LoRAs
|
|
manager = SDLoraManager(sdxl)
|
|
manager.add_loras("scifi-lora", load_from_safetensors("scifi.safetensors"), scale=1.0)
|
|
manager.add_loras("pixel-art-lora", load_from_safetensors("pixelart.safetensors"), scale=1.4)
|
|
|
|
# hyperparameters
|
|
seed = 42
|
|
num_inference_steps = 50
|
|
prompt = "a futuristic castle surrounded by a forest, mountains in the background"
|
|
sdxl.set_inference_steps(num_inference_steps, first_step=0)
|
|
|
|
# enable self-attention guidance to enhance the quality of the generated images
|
|
sag_scale = 0.75
|
|
sdxl.set_self_attention_guidance(enable=True, scale=sag_scale)
|
|
|
|
with no_grad(): # disable gradient calculation for memory-efficient inference
|
|
# encode the text prompts to embeddings, and get the time_ids
|
|
clip_text_embedding, pooled_text_embedding = sdxl.compute_clip_text_embedding(
|
|
text=prompt + ", best quality, high quality",
|
|
negative_text="monochrome, lowres, bad anatomy, worst quality, low quality",
|
|
)
|
|
time_ids = sdxl.default_time_ids
|
|
|
|
# seed the random number generator, for reproducibility
|
|
manual_seed(seed)
|
|
|
|
# SDXL typically generates 1024x1024, here we use a higher resolution
|
|
x = sdxl.init_latents((2048, 2048))
|
|
|
|
# diffusion denoising process
|
|
for step in tqdm(sdxl.steps):
|
|
x = sdxl(
|
|
x,
|
|
step=step,
|
|
clip_text_embedding=clip_text_embedding,
|
|
pooled_text_embedding=pooled_text_embedding,
|
|
time_ids=time_ids,
|
|
)
|
|
predicted_image = sdxl.lda.latents_to_image(x)
|
|
|
|
predicted_image.save("scifi_pixel_sdxl.png")
|
|
```
|
|
|
|
The results are looking great:
|
|
|
|
<figure markdown>
|
|
<img src="scifi_pixel_sdxl.webp" alt="Sci-fi Pixel Art castle" width="400">
|
|
<figcaption>Generated image of a castle in sci-fi, pixel art style.</figcaption>
|
|
</figure>
|
|
|
|
## Multiple LoRAs + IP-Adapter
|
|
|
|
Refiners really shines when it comes to composing different Adapters to fully exploit the possibilities of foundation models.
|
|
|
|
For instance, IP-Adapter (covered in [a previous blog post](https://blog.finegrain.ai/posts/supercharge-stable-diffusion-ip-adapter/)) is a common choice for practictioners wanting to guide the diffusion process towards a specific prompt image.
|
|
|
|
In our example, we would like to guide the diffusion process to align with this image of the [Neuschwanstein Castle](https://en.wikipedia.org/wiki/Neuschwanstein_Castle):
|
|
|
|
<figure markdown>
|
|
<img src="german-castle.jpg" alt="Castle Image" width="400">
|
|
<figcaption>Credits: Bayerische Schlösserverwaltung, Anton Brandl</figcaption>
|
|
</figure>
|
|
|
|
You can easily download the above image by doing:
|
|
|
|
```bash
|
|
curl -O https://refine.rs/guides/adapting_sdxl/german-castle.jpg
|
|
```
|
|
|
|
Instantiate a [`SDXLIPAdapter`][refiners.foundationals.latent_diffusion.stable_diffusion_xl.image_prompt.SDXLIPAdapter] targeting our `sdxl.unet`, and inject it using a simple `.inject()` call:
|
|
|
|
```py
|
|
from refiners.foundationals.latent_diffusion.stable_diffusion_xl.image_prompt import SDXLIPAdapter
|
|
|
|
# load IP-Adapter
|
|
ip_adapter = SDXLIPAdapter(
|
|
target=sdxl.unet,
|
|
weights=load_from_safetensors(
|
|
hf_hub_download(
|
|
repo_id="refiners/sdxl.ip_adapter.plus",
|
|
filename="model.safetensors",
|
|
),
|
|
),
|
|
scale=1.0,
|
|
fine_grained=True, # Use fine-grained IP-Adapter (i.e IP-Adapter Plus)
|
|
)
|
|
ip_adapter.clip_image_encoder.load_from_safetensors(
|
|
hf_hub_download(
|
|
repo_id="refiners/sd21.unclip.image_encoder",
|
|
filename="model.safetensors",
|
|
)
|
|
)
|
|
ip_adapter.inject()
|
|
```
|
|
|
|
Then, at runtime, we simply compute the embedding of the image prompt through the `ip_adapter` object, and set its embedding calling `.set_clip_image_embedding()`:
|
|
|
|
```py
|
|
from PIL import Image
|
|
image_prompt = Image.open("german-castle.jpg")
|
|
|
|
with torch.no_grad():
|
|
clip_image_embedding = ip_adapter.compute_clip_image_embedding(ip_adapter.preprocess_image(image_prompt))
|
|
ip_adapter.set_clip_image_embedding(clip_image_embedding)
|
|
|
|
# And start the diffusion process
|
|
```
|
|
|
|
!!! note
|
|
Be wary that composing Adapters (especially ones of different natures, such as LoRAs and IP-Adapter) can be tricky, as their respective effects can be adversarial.
|
|
This is visible in our example below. In the code below, we tuned the LoRAs scales respectively to `1.5` and `1.55`.
|
|
We invite you to try and test different seeds and scales to find the perfect combination!
|
|
Furthermore, the order in which you inject adapters can also have an impact on the final result.
|
|
|
|
??? example "Expand to see the entire end-to-end code"
|
|
|
|
```py
|
|
import torch
|
|
from huggingface_hub import hf_hub_download
|
|
from PIL import Image
|
|
from tqdm import tqdm
|
|
|
|
from refiners.fluxion.utils import load_from_safetensors, manual_seed, no_grad
|
|
from refiners.foundationals.latent_diffusion.lora import SDLoraManager
|
|
from refiners.foundationals.latent_diffusion.stable_diffusion_xl import StableDiffusion_XL
|
|
from refiners.foundationals.latent_diffusion.stable_diffusion_xl.image_prompt import SDXLIPAdapter
|
|
|
|
# instantiate SDXL model
|
|
sdxl = StableDiffusion_XL(
|
|
device="cuda", # use GPU
|
|
dtype=torch.float16 # use half-precision for memory efficiency
|
|
)
|
|
|
|
# Load the weights
|
|
sdxl.clip_text_encoder.load_from_safetensors(
|
|
hf_hub_download(
|
|
repo_id="refiners/sdxl.text_encoder",
|
|
filename="model.safetensors",
|
|
)
|
|
)
|
|
sdxl.unet.load_from_safetensors(
|
|
hf_hub_download(
|
|
repo_id="refiners/sdxl.unet",
|
|
filename="model.safetensors",
|
|
)
|
|
)
|
|
sdxl.lda.load_from_safetensors(
|
|
hf_hub_download(
|
|
repo_id="refiners/sdxl.autoencoder_fp16fix",
|
|
filename="model.safetensors",
|
|
)
|
|
)
|
|
|
|
# hyperparameters
|
|
seed = 42
|
|
num_inference_steps = 50
|
|
prompt = "a futuristic castle surrounded by a forest, mountains in the background"
|
|
sdxl.set_inference_steps(num_inference_steps, first_step=0)
|
|
|
|
# enable self-attention guidance to enhance the quality of the generated images
|
|
sag_scale = 0.75
|
|
sdxl.set_self_attention_guidance(enable=True, scale=sag_scale)
|
|
|
|
# add Sci-Fi and Pixel-Art LoRAs
|
|
manager = SDLoraManager(sdxl)
|
|
manager.add_loras("scifi-lora", load_from_safetensors("scifi.safetensors"), scale=1.5)
|
|
manager.add_loras("pixel-art-lora", load_from_safetensors("pixelart.safetensors"), scale=1.55)
|
|
|
|
# Instantiate the IP-Adapter
|
|
ip_adapter = SDXLIPAdapter(
|
|
target=sdxl.unet,
|
|
weights=load_from_safetensors(
|
|
hf_hub_download(
|
|
repo_id="refiners/sdxl.ip_adapter.plus",
|
|
filename="model.safetensors",
|
|
),
|
|
),
|
|
scale=1.0,
|
|
fine_grained=True, # Use fine-grained IP-Adapter (i.e IP-Adapter Plus)
|
|
)
|
|
ip_adapter.clip_image_encoder.load_from_safetensors(
|
|
hf_hub_download(
|
|
repo_id="refiners/sd21.unclip.image_encoder",
|
|
filename="model.safetensors",
|
|
)
|
|
)
|
|
ip_adapter.inject()
|
|
|
|
# load image prompt
|
|
image_prompt = Image.open("german-castle.jpg")
|
|
|
|
with no_grad(): # disable gradient calculation for memory-efficient inference
|
|
# encode the text prompts to embeddings, and get the time_ids
|
|
clip_text_embedding, pooled_text_embedding = sdxl.compute_clip_text_embedding(
|
|
text=prompt + ", best quality, high quality",
|
|
negative_text="monochrome, lowres, bad anatomy, worst quality, low quality",
|
|
)
|
|
time_ids = sdxl.default_time_ids
|
|
|
|
# compute image prompt embeddings
|
|
clip_image_embedding = ip_adapter.compute_clip_image_embedding(ip_adapter.preprocess_image(image_prompt))
|
|
ip_adapter.set_clip_image_embedding(clip_image_embedding)
|
|
|
|
# seed the random number generator, for reproducibility
|
|
manual_seed(seed)
|
|
|
|
# SDXL typically generates 1024x1024
|
|
x = sdxl.init_latents((1024, 1024))
|
|
|
|
# diffusion denoising process
|
|
for step in tqdm(sdxl.steps):
|
|
x = sdxl(
|
|
x,
|
|
step=step,
|
|
clip_text_embedding=clip_text_embedding,
|
|
pooled_text_embedding=pooled_text_embedding,
|
|
time_ids=time_ids,
|
|
)
|
|
predicted_image = sdxl.lda.latents_to_image(x)
|
|
|
|
predicted_image.save("scifi_pixel_IP_sdxl.png")
|
|
```
|
|
|
|
The result looks convincing: we do get a *pixel-art, futuristic-looking Neuschwanstein castle*!
|
|
|
|
<figure markdown>
|
|
<img src="scifi_pixel_IP_sdxl.webp" alt="Generated image in sci-fi, pixel art style, using IP-Adapter." width="400">
|
|
<figcaption>Generated image in sci-fi, pixel art style, using IP-Adapter.</figcaption>
|
|
</figure>
|
|
|
|
|
|
## Multiple LoRAs + IP-Adapter + T2I-Adapter
|
|
|
|
T2I-Adapters are a powerful class of Adapters aiming at controlling the Text-to-Image (T2I) diffusion process with external control signals, such as canny edges or pose estimations inputs.
|
|
In this section, we will compose our previous example with the [Depth-Zoe Adapter](https://huggingface.co/TencentARC/t2i-adapter-depth-zoe-sdxl-1.0), providing a depth condition to the diffusion process using the following depth map as input signal:
|
|
|
|
<figure markdown>
|
|
<img src="zoe-depth-map-german-castle.png" alt="Input depth map of the initial castle image" width="400">
|
|
<figcaption>Input depth map of the initial castle image.</figcaption>
|
|
</figure>
|
|
|
|
You can easily download the above image by doing:
|
|
|
|
```bash
|
|
curl -O https://refine.rs/guides/adapting_sdxl/zoe-depth-map-german-castle.png
|
|
```
|
|
|
|
Then, just inject it as usual:
|
|
|
|
```py
|
|
from refiners.foundationals.latent_diffusion.stable_diffusion_xl.t2i_adapter import SDXLT2IAdapter
|
|
|
|
# Load T2I-Adapter
|
|
t2i_adapter = SDXLT2IAdapter(
|
|
target=sdxl.unet,
|
|
name="zoe-depth",
|
|
weights=load_from_safetensors(
|
|
hf_hub_download(
|
|
repo_id="refiners/sdxl.t2i_adapter.depth.zoe",
|
|
filename="model.safetensors",
|
|
),
|
|
),
|
|
scale=0.72,
|
|
).inject()
|
|
```
|
|
|
|
Finally, at runtime, compute the embedding of the input condition through the `t2i_adapter` object, and set its embedding calling `.set_condition_features()`:
|
|
|
|
```py
|
|
from refiners.fluxion.utils import image_to_tensor, interpolate
|
|
|
|
image_depth_condition = Image.open("zoe-depth-map-german-castle.png")
|
|
|
|
with torch.no_grad():
|
|
condition = image_to_tensor(image_depth_condition.convert("RGB"), device=sdxl.device, dtype=sdxl.dtype)
|
|
# Spatial dimensions should be divisible by default downscale factor (=16 for T2IAdapter ConditionEncoder)
|
|
condition = interpolate(condition, torch.Size((1024, 1024)))
|
|
t2i_adapter.set_condition_features(features=t2i_adapter.compute_condition_features(condition))
|
|
|
|
```
|
|
|
|
??? example "Expand to see the entire end-to-end code"
|
|
|
|
```py
|
|
import torch
|
|
from huggingface_hub import hf_hub_download
|
|
from PIL import Image
|
|
from tqdm import tqdm
|
|
|
|
from refiners.fluxion.utils import image_to_tensor, interpolate, load_from_safetensors, manual_seed, no_grad
|
|
from refiners.foundationals.latent_diffusion.lora import SDLoraManager
|
|
from refiners.foundationals.latent_diffusion.stable_diffusion_xl import StableDiffusion_XL
|
|
from refiners.foundationals.latent_diffusion.stable_diffusion_xl.image_prompt import SDXLIPAdapter
|
|
from refiners.foundationals.latent_diffusion.stable_diffusion_xl.t2i_adapter import SDXLT2IAdapter
|
|
|
|
# instantiate SDXL model
|
|
sdxl = StableDiffusion_XL(
|
|
device="cuda", # use GPU
|
|
dtype=torch.float16 # use half-precision for memory efficiency
|
|
)
|
|
|
|
# Load the weights
|
|
sdxl.clip_text_encoder.load_from_safetensors(
|
|
hf_hub_download(
|
|
repo_id="refiners/sdxl.text_encoder",
|
|
filename="model.safetensors",
|
|
)
|
|
)
|
|
sdxl.unet.load_from_safetensors(
|
|
hf_hub_download(
|
|
repo_id="refiners/sdxl.unet",
|
|
filename="model.safetensors",
|
|
)
|
|
)
|
|
sdxl.lda.load_from_safetensors(
|
|
hf_hub_download(
|
|
repo_id="refiners/sdxl.autoencoder_fp16fix",
|
|
filename="model.safetensors",
|
|
)
|
|
)
|
|
|
|
# hyperparameters
|
|
seed = 42
|
|
num_inference_steps = 50
|
|
prompt = "a futuristic castle surrounded by a forest, mountains in the background"
|
|
sdxl.set_inference_steps(num_inference_steps, first_step=0)
|
|
|
|
# enable self-attention guidance to enhance the quality of the generated images
|
|
sag_scale = 0.75
|
|
sdxl.set_self_attention_guidance(enable=True, scale=sag_scale)
|
|
|
|
# add Sci-Fi and Pixel-Art LoRAs
|
|
manager = SDLoraManager(sdxl)
|
|
manager.add_loras("scifi-lora", load_from_safetensors("scifi.safetensors"), scale=1.5)
|
|
manager.add_loras("pixel-art-lora", load_from_safetensors("pixelart.safetensors"), scale=1.55)
|
|
|
|
# Instantiate the IP-Adapter
|
|
ip_adapter = SDXLIPAdapter(
|
|
target=sdxl.unet,
|
|
weights=load_from_safetensors(
|
|
hf_hub_download(
|
|
repo_id="refiners/sdxl.ip_adapter.plus",
|
|
filename="model.safetensors",
|
|
),
|
|
),
|
|
scale=1.0,
|
|
fine_grained=True, # Use fine-grained IP-Adapter (i.e IP-Adapter Plus)
|
|
)
|
|
ip_adapter.clip_image_encoder.load_from_safetensors(
|
|
hf_hub_download(
|
|
repo_id="refiners/sd21.unclip.image_encoder",
|
|
filename="model.safetensors",
|
|
)
|
|
)
|
|
ip_adapter.inject()
|
|
|
|
# Load T2I-Adapter
|
|
t2i_adapter = SDXLT2IAdapter(
|
|
target=sdxl.unet,
|
|
name="zoe-depth",
|
|
weights=load_from_safetensors(
|
|
hf_hub_download(
|
|
repo_id="refiners/sdxl.t2i_adapter.depth.zoe",
|
|
filename="model.safetensors",
|
|
),
|
|
),
|
|
scale=0.72,
|
|
).inject()
|
|
|
|
# load image prompt and image depth condition
|
|
image_prompt = Image.open("german-castle.jpg")
|
|
image_depth_condition = Image.open("zoe-depth-map-german-castle.png")
|
|
|
|
with no_grad(): # disable gradient calculation for memory-efficient inference
|
|
# encode the text prompts to embeddings, and get the time_ids
|
|
clip_text_embedding, pooled_text_embedding = sdxl.compute_clip_text_embedding(
|
|
text=prompt + ", best quality, high quality",
|
|
negative_text="monochrome, lowres, bad anatomy, worst quality, low quality",
|
|
)
|
|
time_ids = sdxl.default_time_ids
|
|
|
|
# compute and set image prompt embeddings
|
|
clip_image_embedding = ip_adapter.compute_clip_image_embedding(ip_adapter.preprocess_image(image_prompt))
|
|
ip_adapter.set_clip_image_embedding(clip_image_embedding)
|
|
|
|
# compute and set the T2I features
|
|
condition = image_to_tensor(image_depth_condition.convert("RGB"), device=sdxl.device, dtype=sdxl.dtype)
|
|
condition = interpolate(condition, torch.Size((1024, 1024)))
|
|
t2i_features = t2i_adapter.compute_condition_features(condition)
|
|
t2i_adapter.set_condition_features(features=t2i_features)
|
|
|
|
# seed the random number generator, for reproducibility
|
|
manual_seed(seed)
|
|
|
|
# SDXL typically generates 1024x1024
|
|
x = sdxl.init_latents((1024, 1024))
|
|
|
|
# diffusion denoising process
|
|
for step in tqdm(sdxl.steps):
|
|
x = sdxl(
|
|
x,
|
|
step=step,
|
|
clip_text_embedding=clip_text_embedding,
|
|
pooled_text_embedding=pooled_text_embedding,
|
|
time_ids=time_ids,
|
|
)
|
|
predicted_image = sdxl.lda.latents_to_image(x)
|
|
|
|
predicted_image.save("scifi_pixel_IP_T2I_sdxl.png")
|
|
```
|
|
|
|
The results look convincing: the depth and proportions of the initial castle are more faithful, while preserving our *futuristic, pixel-art style*!
|
|
<figure markdown>
|
|
<img src="scifi_pixel_IP_T2I_sdxl.webp" alt="Generated image in sci-fi, pixel art style, using IP and T2I Adapters" width="400">
|
|
<figcaption>Generated image in sci-fi, pixel art style, using IP and T2I Adapters.</figcaption>
|
|
</figure>
|
|
|
|
## Wrap up
|
|
|
|
As you can see in this guide, composing Adapters on top of foundation models is pretty seamless in Refiners, allowing practitioners to quickly test out different combinations of Adapters for their needs. We encourage you to try out different ones, and even train some yourselves!
|