REVA-QCAV/unet/unet_parts.py

83 lines
2.1 KiB
Python
Raw Normal View History

#!/usr/bin/python
# sub-parts of the U-Net model
import torch
import torch.nn as nn
import torch.nn.functional as F
class double_conv(nn.Module):
'''(conv => BN => ReLU) * 2'''
def __init__(self, in_ch, out_ch):
super(double_conv, self).__init__()
self.conv = nn.Sequential(
nn.Conv2d(in_ch, out_ch, 3, padding=1),
2017-08-19 08:59:51 +00:00
nn.BatchNorm2d(out_ch),
nn.ReLU(inplace=True),
nn.Conv2d(out_ch, out_ch, 3, padding=1),
2017-08-19 08:59:51 +00:00
nn.BatchNorm2d(out_ch),
nn.ReLU(inplace=True)
)
def forward(self, x):
x = self.conv(x)
return x
class inconv(nn.Module):
def __init__(self, in_ch, out_ch):
super(inconv, self).__init__()
self.conv = double_conv(in_ch, out_ch)
def forward(self, x):
x = self.conv(x)
return x
class down(nn.Module):
def __init__(self, in_ch, out_ch):
super(down, self).__init__()
self.mpconv = nn.Sequential(
nn.MaxPool2d(2),
double_conv(in_ch, out_ch)
)
def forward(self, x):
x = self.mpconv(x)
return x
class up(nn.Module):
def __init__(self, in_ch, out_ch, bilinear=True):
super(up, self).__init__()
# would be a nice idea if the upsampling could be learned too,
#  but my machine do not have enough memory to handle all those weights
if bilinear:
self.up = nn.UpsamplingBilinear2d(scale_factor=2)
else:
self.up = nn.ConvTranspose2d(in_ch//2, in_ch//2, 2, stride=2)
self.conv = double_conv(in_ch, out_ch)
def forward(self, x1, x2):
x1 = self.up(x1)
diffX = x1.size()[2] - x2.size()[2]
diffY = x1.size()[3] - x2.size()[3]
x2 = F.pad(x2, (diffX // 2, int(diffX / 2),
diffY // 2, int(diffY / 2)))
x = torch.cat([x2, x1], dim=1)
x = self.conv(x)
return x
class outconv(nn.Module):
def __init__(self, in_ch, out_ch):
super(outconv, self).__init__()
self.conv = nn.Conv2d(in_ch, out_ch, 1)
def forward(self, x):
x = self.conv(x)
return x