mirror of
https://github.com/Laurent2916/REVA-QCAV.git
synced 2024-11-08 22:42:02 +00:00
90e988c10f
Former-commit-id: 245b072a82f2e87a9032a1b87136a9930c008afc
83 lines
2.1 KiB
Python
83 lines
2.1 KiB
Python
#!/usr/bin/python
|
||
|
||
# sub-parts of the U-Net model
|
||
|
||
import torch
|
||
import torch.nn as nn
|
||
import torch.nn.functional as F
|
||
|
||
|
||
class double_conv(nn.Module):
|
||
'''(conv => BN => ReLU) * 2'''
|
||
def __init__(self, in_ch, out_ch):
|
||
super(double_conv, self).__init__()
|
||
self.conv = nn.Sequential(
|
||
nn.Conv2d(in_ch, out_ch, 3, padding=1),
|
||
nn.BatchNorm2d(out_ch),
|
||
nn.ReLU(inplace=True),
|
||
nn.Conv2d(out_ch, out_ch, 3, padding=1),
|
||
nn.BatchNorm2d(out_ch),
|
||
nn.ReLU(inplace=True)
|
||
)
|
||
|
||
def forward(self, x):
|
||
x = self.conv(x)
|
||
return x
|
||
|
||
|
||
class inconv(nn.Module):
|
||
def __init__(self, in_ch, out_ch):
|
||
super(inconv, self).__init__()
|
||
self.conv = double_conv(in_ch, out_ch)
|
||
|
||
def forward(self, x):
|
||
x = self.conv(x)
|
||
return x
|
||
|
||
|
||
class down(nn.Module):
|
||
def __init__(self, in_ch, out_ch):
|
||
super(down, self).__init__()
|
||
self.mpconv = nn.Sequential(
|
||
nn.MaxPool2d(2),
|
||
double_conv(in_ch, out_ch)
|
||
)
|
||
|
||
def forward(self, x):
|
||
x = self.mpconv(x)
|
||
return x
|
||
|
||
|
||
class up(nn.Module):
|
||
def __init__(self, in_ch, out_ch, bilinear=True):
|
||
super(up, self).__init__()
|
||
|
||
# would be a nice idea if the upsampling could be learned too,
|
||
# but my machine do not have enough memory to handle all those weights
|
||
if bilinear:
|
||
self.up = nn.UpsamplingBilinear2d(scale_factor=2)
|
||
else:
|
||
self.up = nn.ConvTranspose2d(in_ch//2, in_ch//2, 2, stride=2)
|
||
|
||
self.conv = double_conv(in_ch, out_ch)
|
||
|
||
def forward(self, x1, x2):
|
||
x1 = self.up(x1)
|
||
diffX = x1.size()[2] - x2.size()[2]
|
||
diffY = x1.size()[3] - x2.size()[3]
|
||
x2 = F.pad(x2, (diffX // 2, int(diffX / 2),
|
||
diffY // 2, int(diffY / 2)))
|
||
x = torch.cat([x2, x1], dim=1)
|
||
x = self.conv(x)
|
||
return x
|
||
|
||
|
||
class outconv(nn.Module):
|
||
def __init__(self, in_ch, out_ch):
|
||
super(outconv, self).__init__()
|
||
self.conv = nn.Conv2d(in_ch, out_ch, 1)
|
||
|
||
def forward(self, x):
|
||
x = self.conv(x)
|
||
return x
|